兽类学报 ›› 2022, Vol. 42 ›› Issue (6): 687-697.DOI: 10.16829/j.slxb.150692
杨新根1,2, 王艳龙3, 邹波1, 常文英1, 侯玉1, 赵悠悠4, 王庭林1(), 张健旭5,6()
收稿日期:
2022-05-23
接受日期:
2022-08-29
出版日期:
2022-11-30
发布日期:
2022-12-02
通讯作者:
王庭林,张健旭
作者简介:
杨新根 (1974- ),男,副研究员,主要从事啮齿动物研究.
基金资助:
Xingen YANG1,2, Yanlong WANG3, Bo ZOU1, Wenying CHANG1, Yu HOU1, Youyou ZHAO4, Tinglin WANG1(), Jianxu ZHANG5,6()
Received:
2022-05-23
Accepted:
2022-08-29
Online:
2022-11-30
Published:
2022-12-02
Contact:
Tinglin WANG,Jianxu ZHANG
摘要:
维生素K环氧化物还原酶复合物亚基 1基因 (Vkorc1) 的变异与啮齿动物对抗凝血灭鼠剂的抗药性密切相关。为掌握Vkorc1基因变异在野栖类和家栖类啮齿动物中的流行情况,从山西省13个县 (市、区) 的农田和14个县 (市、区) 的养殖场采样,检测长尾仓鼠 (Cricetulus longicaudatus) 和黄胸鼠 (Rattus tanezumi) Vkorc1基因编码区的变异位点及携带不同变异位点的个体的分布情况。结果显示,长尾仓鼠在13个采样地均有捕获,整体占野栖类啮齿动物的23.29%;黄胸鼠分布于8个采样地,整体占家栖类啮齿动物的68.63%。在长尾仓鼠样本 (n = 105) 中检测到6个沉默突变位点和5个错义突变位点,其中,沉默突变C438T (His146His) 的变异率最高,为67.62%;共有17只长尾仓鼠样本存在错义突变位点。黄胸鼠样本 (n = 70) 中存在6个沉默突变位点和1个错义突变位点,其中,最常见的沉默突变位点A321C (Ile107Ile) 和T411C (Thr137Thr) 的变异率均达到18.57%;8只黄胸鼠样本存在与其抗药性相关的A416G (Tyr139Cys) 错义突变,其中7只来源于太原市小店区 (XID),变异率为35.00%。本研究表明在家居和自然环境中均存在Vkorc1基因的变异,并在太原市小店区检测到黄胸鼠抗性种群的存在,需加强对此种群的监测。
中图分类号:
杨新根, 王艳龙, 邹波, 常文英, 侯玉, 赵悠悠, 王庭林, 张健旭. 不同栖息环境的两种啮齿动物Vkorc1基因多态性[J]. 兽类学报, 2022, 42(6): 687-697.
Xingen YANG, Yanlong WANG, Bo ZOU, Wenying CHANG, Yu HOU, Youyou ZHAO, Tinglin WANG, Jianxu ZHANG. Vkorc1 polymorphism of two rodent species in different habitats[J]. ACTA THERIOLOGICA SINICA, 2022, 42(6): 687-697.
样本采集地 Sampling sites | 采样生境 Sampling habitats | 地理位置 Geographic coordinates | 海拔 Elevation (m) |
---|---|---|---|
运城市永济市 Yongji City, Yuncheng City (YOJ) | A | 110.43°E, 34.86°N | 392 |
晋城市陵川县 Lingchuan County, Jincheng City (LIC) | A,B | 113.27°E, 35.74°N | 1 080 |
临汾市洪洞县 Hongtong County, Linfen City (HOT) | C | 111.59°E, 36.25°N | 450 |
临汾市隰县 Xi County, Linfen City (XIX) | A,D | 110.85°E, 36.50°N | 1 020 |
临汾市永和县 Yonghe County, Linfen City (YOH) | D | 110.63°E, 36.76°N | 890 |
长治市沁县 Qin County, Changzhi City (QNX) | A,B | 112.69°E, 36.74°N | 1 140 |
晋中市左权县 Zuoquan County, Jinzhong City (ZOQ) | A,C | 113.31°E, 37.05°N | 1 080 |
晋中市祁县 Qi County, Jinzhong City (QIX) | A | 112.31°E, 37.35°N | 770 |
吕梁市中阳县 Zhongyang County, Lvliang City (ZHY) | B | 111.17°E, 37.36°N | 1 450 |
吕梁市离石区 Lishi District, Lvliang City (LIS) | A,B | 111.98°E, 37.52°N | 1 230 |
太原市小店区 Xiaodian District, Taiyuan City (XID) | C | 113.27°E, 37.80°N | 780 |
太原市娄烦县 Loufan County, Taiyuan City (LOF) | A,C | 111.86°E, 38.05°N | 1 320 |
太原市阳曲县 Yangqu County, Taiyuan City (YAQ) | B | 112.67°E, 38.29°N | 800 |
阳泉市盂县 Yu County, Yangquan City (YUX) | C,E | 113.35°E, 37.71°N | 1 250 |
忻州市静乐县 Jingle County, Xinzhou City (JNL) | B | 111.95°E, 38.39°N | 1 260 |
忻州市五台县 Wutai County, Xinzhou City (WUT) | C,E | 113.20°E, 38.64°N | 1 060 |
朔州市朔城区 Shuocheng District, Shuozhou City (SOC) | C | 112.30°E, 39.11°N | 1 140 |
大同市浑源县 Hunyuan County, Datong City (HNY) | C,E | 113.96°E, 39.85°N | 1 550 |
表1 样本采集地概况
Table 1 The collecting details of sample sites
样本采集地 Sampling sites | 采样生境 Sampling habitats | 地理位置 Geographic coordinates | 海拔 Elevation (m) |
---|---|---|---|
运城市永济市 Yongji City, Yuncheng City (YOJ) | A | 110.43°E, 34.86°N | 392 |
晋城市陵川县 Lingchuan County, Jincheng City (LIC) | A,B | 113.27°E, 35.74°N | 1 080 |
临汾市洪洞县 Hongtong County, Linfen City (HOT) | C | 111.59°E, 36.25°N | 450 |
临汾市隰县 Xi County, Linfen City (XIX) | A,D | 110.85°E, 36.50°N | 1 020 |
临汾市永和县 Yonghe County, Linfen City (YOH) | D | 110.63°E, 36.76°N | 890 |
长治市沁县 Qin County, Changzhi City (QNX) | A,B | 112.69°E, 36.74°N | 1 140 |
晋中市左权县 Zuoquan County, Jinzhong City (ZOQ) | A,C | 113.31°E, 37.05°N | 1 080 |
晋中市祁县 Qi County, Jinzhong City (QIX) | A | 112.31°E, 37.35°N | 770 |
吕梁市中阳县 Zhongyang County, Lvliang City (ZHY) | B | 111.17°E, 37.36°N | 1 450 |
吕梁市离石区 Lishi District, Lvliang City (LIS) | A,B | 111.98°E, 37.52°N | 1 230 |
太原市小店区 Xiaodian District, Taiyuan City (XID) | C | 113.27°E, 37.80°N | 780 |
太原市娄烦县 Loufan County, Taiyuan City (LOF) | A,C | 111.86°E, 38.05°N | 1 320 |
太原市阳曲县 Yangqu County, Taiyuan City (YAQ) | B | 112.67°E, 38.29°N | 800 |
阳泉市盂县 Yu County, Yangquan City (YUX) | C,E | 113.35°E, 37.71°N | 1 250 |
忻州市静乐县 Jingle County, Xinzhou City (JNL) | B | 111.95°E, 38.39°N | 1 260 |
忻州市五台县 Wutai County, Xinzhou City (WUT) | C,E | 113.20°E, 38.64°N | 1 060 |
朔州市朔城区 Shuocheng District, Shuozhou City (SOC) | C | 112.30°E, 39.11°N | 1 140 |
大同市浑源县 Hunyuan County, Datong City (HNY) | C,E | 113.96°E, 39.85°N | 1 550 |
图1 长尾仓鼠和黄胸鼠采集地及样本占比 (山西省). A:长尾仓鼠;B:黄胸鼠. 图中采集地使用缩写,全称见表1. “×” 表示未捕获到黄胸鼠的采集地;饼状图表示样本在啮齿动物群落中的占比,红色表示长尾仓鼠,蓝色表示黄胸鼠,白色表示其他啮齿动物
Fig. 1 The sampling sites and proportions of samples (Shanxi Province). A: Cricetulus longicaudatus; B: Ruttus tanezumi. Abbreviations are used for collection sites, see table 1 for collection sites. ‘×’ represent the sites that R. tanezumi was not captured; pie charts represent the proportions of samples, red for C. longicaudatus, blue for R. tanezumi, and white for other species
样本 Samples | 引物名称 Primer names | 引物序列 (5′‒3′) Primer sequences (5′‒3′) | PCR产物大小 Size of PCR products (bp) | 目标外显子 Target exons |
---|---|---|---|---|
长尾仓鼠 Cricetulus longicaudatus | C.l.-Vk1/F/e1-2 | AGAATGGCAGCCGAGGCGGGTCAACCTTC | 约1 300 | 1,2 |
C.l.-Vk1/R/e1-2 | CTTCCTGAACTAACTAGGATGCTGGTGTC | |||
C.l.-Vk1/F/e3 | GAATATAGACTTTAGCAGGAGTACTTACT | 约500 | 3 | |
C.l.-Vk1/R/e3 | GTGTGGTTATGGAGGGGGACTGGAATGAAG | |||
黄胸鼠 Ruttus tanezumi | R.t.-Vk1/F/e1-2 | GTTTACCAGCCCAGCATTCCTAGCTGTCA | 约 1 400 | 1,2 |
R.t.-Vk1/R/e1-2 | TTTGAGGGCCCTTCAAGCCTCTGGCTACC | |||
R.t.-Vk1/F/e3 | ACTCTGGGTCCCAAGAATTATTGAACAG | 约 400 | 3 | |
R.t.-Vk1/R/e3 | GGCAAAGCAAGTCATGTCAGCCTGGCAT |
表2 长尾仓鼠和黄胸鼠Vkorc1基因编码区的特异性引物序列
Table 2 Specific primer sequences for the coding regions of Vkorc1 of Cricetulus longicaudatus and Ruttus tanezumi
样本 Samples | 引物名称 Primer names | 引物序列 (5′‒3′) Primer sequences (5′‒3′) | PCR产物大小 Size of PCR products (bp) | 目标外显子 Target exons |
---|---|---|---|---|
长尾仓鼠 Cricetulus longicaudatus | C.l.-Vk1/F/e1-2 | AGAATGGCAGCCGAGGCGGGTCAACCTTC | 约1 300 | 1,2 |
C.l.-Vk1/R/e1-2 | CTTCCTGAACTAACTAGGATGCTGGTGTC | |||
C.l.-Vk1/F/e3 | GAATATAGACTTTAGCAGGAGTACTTACT | 约500 | 3 | |
C.l.-Vk1/R/e3 | GTGTGGTTATGGAGGGGGACTGGAATGAAG | |||
黄胸鼠 Ruttus tanezumi | R.t.-Vk1/F/e1-2 | GTTTACCAGCCCAGCATTCCTAGCTGTCA | 约 1 400 | 1,2 |
R.t.-Vk1/R/e1-2 | TTTGAGGGCCCTTCAAGCCTCTGGCTACC | |||
R.t.-Vk1/F/e3 | ACTCTGGGTCCCAAGAATTATTGAACAG | 约 400 | 3 | |
R.t.-Vk1/R/e3 | GGCAAAGCAAGTCATGTCAGCCTGGCAT |
样本采集地 Sampling sites | 采样生境 Sampling habitats | 布夹 (笼) 数 Number of clips (cages) | 捕获数 Number of captures | 捕获率 Capture rate (%) | 啮齿动物占比 Proportions of rodents (%) | ||
---|---|---|---|---|---|---|---|
黄胸鼠 Ruttus tanezumi | 长尾仓鼠 Cricetulus longicaudatus | 其他啮齿动物 Others | |||||
YOJ | A | 200 | 10 | 5.00 | 50.00 | 50.00 | |
LIC | B | 450 | 41 | 9.11 | 12.20 | 87.80 | |
A | 180 | 13 | 7.22 | 76.92 | 23.08 | ||
HOT | C | 200 | 9 | 4.50 | 77.78 | 22.22 | |
XIX | D | 440 | 65 | 14.77 | 13.85 | 86.15 | |
A | 240 | 3 | 1.25 | 0.00 | 100 | ||
YOH | D | 400 | 38 | 9.50 | 21.05 | 78.95 | |
QNX | B | 450 | 43 | 9.56 | 25.58 | 74.42 | |
A | 210 | 10 | 4.76 | 90.00 | 10.00 | ||
ZOQ | B | 425 | 41 | 9.65 | 21.95 | 78.05 | |
C | 160 | 2 | 1.25 | 0.00 | 100 | ||
QIX | A | 210 | 8 | 3.81 | 75.00 | 25.00 | |
ZHY | B | 450 | 34 | 7.56 | 32.35 | 67.65 | |
LIS | B | 540 | 37 | 6.85 | 21.62 | 78.38 | |
A | 330 | 10 | 3.03 | 70.00 | 30.00 | ||
XID | C | 750 | 23 | 3.07 | 86.96 | 13.04 | |
LOF | B | 440 | 34 | 7.73 | 32.35 | 67.65 | |
C | 200 | 1 | 0.50 | 0.00 | 100 | ||
YAQ | B | 550 | 42 | 7.64 | 26.19 | 73.81 | |
YUX | E | 400 | 29 | 7.25 | 34.48 | 65.52 | |
C | 160 | 1 | 0.63 | 0.00 | 100 | ||
JNL | B | 440 | 42 | 9.55 | 19.04 | 80.96 | |
WUT | E | 400 | 36 | 9.00 | 30.56 | 69.44 | |
C | 460 | 9 | 1.96 | 66.67 | 33.33 | ||
SOC | C | 270 | 2 | 0.74 | 0.00 | 100 | |
HNY | E | 420 | 29 | 6.90 | 24.14 | 75.86 | |
C | 270 | 1 | 0.37 | 0.00 | 100 | ||
合计 Total | 9 665 | 613 |
表3 啮齿动物捕获率及样本占比
Table 3 The sampling sites and the trapping details of rodents
样本采集地 Sampling sites | 采样生境 Sampling habitats | 布夹 (笼) 数 Number of clips (cages) | 捕获数 Number of captures | 捕获率 Capture rate (%) | 啮齿动物占比 Proportions of rodents (%) | ||
---|---|---|---|---|---|---|---|
黄胸鼠 Ruttus tanezumi | 长尾仓鼠 Cricetulus longicaudatus | 其他啮齿动物 Others | |||||
YOJ | A | 200 | 10 | 5.00 | 50.00 | 50.00 | |
LIC | B | 450 | 41 | 9.11 | 12.20 | 87.80 | |
A | 180 | 13 | 7.22 | 76.92 | 23.08 | ||
HOT | C | 200 | 9 | 4.50 | 77.78 | 22.22 | |
XIX | D | 440 | 65 | 14.77 | 13.85 | 86.15 | |
A | 240 | 3 | 1.25 | 0.00 | 100 | ||
YOH | D | 400 | 38 | 9.50 | 21.05 | 78.95 | |
QNX | B | 450 | 43 | 9.56 | 25.58 | 74.42 | |
A | 210 | 10 | 4.76 | 90.00 | 10.00 | ||
ZOQ | B | 425 | 41 | 9.65 | 21.95 | 78.05 | |
C | 160 | 2 | 1.25 | 0.00 | 100 | ||
QIX | A | 210 | 8 | 3.81 | 75.00 | 25.00 | |
ZHY | B | 450 | 34 | 7.56 | 32.35 | 67.65 | |
LIS | B | 540 | 37 | 6.85 | 21.62 | 78.38 | |
A | 330 | 10 | 3.03 | 70.00 | 30.00 | ||
XID | C | 750 | 23 | 3.07 | 86.96 | 13.04 | |
LOF | B | 440 | 34 | 7.73 | 32.35 | 67.65 | |
C | 200 | 1 | 0.50 | 0.00 | 100 | ||
YAQ | B | 550 | 42 | 7.64 | 26.19 | 73.81 | |
YUX | E | 400 | 29 | 7.25 | 34.48 | 65.52 | |
C | 160 | 1 | 0.63 | 0.00 | 100 | ||
JNL | B | 440 | 42 | 9.55 | 19.04 | 80.96 | |
WUT | E | 400 | 36 | 9.00 | 30.56 | 69.44 | |
C | 460 | 9 | 1.96 | 66.67 | 33.33 | ||
SOC | C | 270 | 2 | 0.74 | 0.00 | 100 | |
HNY | E | 420 | 29 | 6.90 | 24.14 | 75.86 | |
C | 270 | 1 | 0.37 | 0.00 | 100 | ||
合计 Total | 9 665 | 613 |
样本 Samples | 样本数 Number of samples | 变异类型 Mutation types | 核苷酸变异 Nucleotide mutations | 氨基酸变异 Amino acid mutations | 外显子 Exons | 携带变异位点个体数 Number of samples with mutations* | 变异率 Mutation rate (%) |
---|---|---|---|---|---|---|---|
长尾仓鼠 Cricetulus longicaudatus | 105 | 沉默突变 Silent mutation | G78A(C) | Ala26Ala | 1 | 16 (LIC1, QNX5, ZOQ1, ZHY2,LOF5, YUX1, JNL1) | 15.24 |
G135A | Val45Val | 1 | 9 (LIC3, XIX1, ZOQ1, ZHY1,YAQ1, HNY2) | 8.57 | |||
C159A | Arg53Arg | 1 | 11 (ZHY2, LIS2, YAQ4, YUX3) | 10.48 | |||
C222T | Ser74Ser | 2 | 10 (LIC5, XIX1, ZOQ1, ZHY1,HNY2) | 9.52 | |||
C342T | Phe114Phe | 3 | 30 (LIC1, QNX5, ZOQ3, ZHY1, LIS1, LOF4, YUX4, JNL5, WUT6) | 28.57 | |||
C438T | His146His | 3 | 71 (LIC3, XIX8, YOH5, QNX2, ZOQ5, ZHY8, LIS7, LOF4, YAQ8, YUX4, JNL5, WUT6, HNY6) | 67.62 | |||
错义突变 Missense mutation | C8T | Thr3Ile | 1 | 9 (LIC3, ZOQ1, ZHY1, LOF1,YAQ1, HNY2) | 8.57 | ||
G106A | Asp36Asn | 1 | 3 (LIC1, ZOQ1, LOF1) | 2.86 | |||
A203G | His68Arg | 2 | 10 (LIC5, XIX1, ZOQ1,ZHY1,HNY2) | 9.52 | |||
A203T | His68Leu | 2 | 2 (XIX2) | 1.90 | |||
G346A | Gly116Ser | 3 | 1 (YUX1) | 0.95 | |||
黄胸鼠 Ruttus tanezumi | 70 | 沉默突变 Silent mutation | A36G | Arg12Arg | 1 | 11 (HOT1, LIS5, XID3, WUT2) | 15.71 |
G123A | Ala41Ala | 1 | 4 (QIX2, XID2) | 5.71 | |||
T204C | His68His | 2 | 8 (HOT1, LIS5, XID1, WUT1) | 11.43 | |||
A246T | Ile82Ile | 2 | 3 (QIX1, XID2) | 4.29 | |||
A321C | Ile107Ile | 3 | 13 (HOT1, QIX2, LIS5, XID3, WUT2) | 18.57 | |||
T411C | Thr137Thr | 3 | 13 (HOT1, QIX2, LIS5,XID3,WUT2) | 18.57 | |||
错义突变 Missense mutation | A416G | Tyr139Cys | 3 | 8 (QIX1, XID7) | 11.43 |
表4 长尾仓鼠和黄胸鼠Vkorc1编码区变异位点
Table 4 The mutation positions in coding regions of Vkorc1 gene of Cricetulus longicaudatus and Ruttus tanezumi
样本 Samples | 样本数 Number of samples | 变异类型 Mutation types | 核苷酸变异 Nucleotide mutations | 氨基酸变异 Amino acid mutations | 外显子 Exons | 携带变异位点个体数 Number of samples with mutations* | 变异率 Mutation rate (%) |
---|---|---|---|---|---|---|---|
长尾仓鼠 Cricetulus longicaudatus | 105 | 沉默突变 Silent mutation | G78A(C) | Ala26Ala | 1 | 16 (LIC1, QNX5, ZOQ1, ZHY2,LOF5, YUX1, JNL1) | 15.24 |
G135A | Val45Val | 1 | 9 (LIC3, XIX1, ZOQ1, ZHY1,YAQ1, HNY2) | 8.57 | |||
C159A | Arg53Arg | 1 | 11 (ZHY2, LIS2, YAQ4, YUX3) | 10.48 | |||
C222T | Ser74Ser | 2 | 10 (LIC5, XIX1, ZOQ1, ZHY1,HNY2) | 9.52 | |||
C342T | Phe114Phe | 3 | 30 (LIC1, QNX5, ZOQ3, ZHY1, LIS1, LOF4, YUX4, JNL5, WUT6) | 28.57 | |||
C438T | His146His | 3 | 71 (LIC3, XIX8, YOH5, QNX2, ZOQ5, ZHY8, LIS7, LOF4, YAQ8, YUX4, JNL5, WUT6, HNY6) | 67.62 | |||
错义突变 Missense mutation | C8T | Thr3Ile | 1 | 9 (LIC3, ZOQ1, ZHY1, LOF1,YAQ1, HNY2) | 8.57 | ||
G106A | Asp36Asn | 1 | 3 (LIC1, ZOQ1, LOF1) | 2.86 | |||
A203G | His68Arg | 2 | 10 (LIC5, XIX1, ZOQ1,ZHY1,HNY2) | 9.52 | |||
A203T | His68Leu | 2 | 2 (XIX2) | 1.90 | |||
G346A | Gly116Ser | 3 | 1 (YUX1) | 0.95 | |||
黄胸鼠 Ruttus tanezumi | 70 | 沉默突变 Silent mutation | A36G | Arg12Arg | 1 | 11 (HOT1, LIS5, XID3, WUT2) | 15.71 |
G123A | Ala41Ala | 1 | 4 (QIX2, XID2) | 5.71 | |||
T204C | His68His | 2 | 8 (HOT1, LIS5, XID1, WUT1) | 11.43 | |||
A246T | Ile82Ile | 2 | 3 (QIX1, XID2) | 4.29 | |||
A321C | Ile107Ile | 3 | 13 (HOT1, QIX2, LIS5, XID3, WUT2) | 18.57 | |||
T411C | Thr137Thr | 3 | 13 (HOT1, QIX2, LIS5,XID3,WUT2) | 18.57 | |||
错义突变 Missense mutation | A416G | Tyr139Cys | 3 | 8 (QIX1, XID7) | 11.43 |
图2 长尾仓鼠不同类型Vkorc1基因变异个体在各采样地的变异率. NM:无变异位点;SM:含沉默突变位点;MM:含错义突变位点
Fig. 2 The mutation rate of Vkorc1 mutatants about Cricetulus longicaudatus in each sampling sites. NM: Non-mutatants; SM: Silent mutatants; MM: Missense mutatants
图3 黄胸鼠不同类型Vkorc1基因变异个体在各采样地的变异率. NM:无变异位点;SM:含沉默突变位点;MM:含错义突变位点
Fig. 3 The mutation rate of Vkorc1 mutatants about Ruttus tanezumi in each sampling sites. NM: Non-mutatants; SM: Silent mutatants; MM: Missense mutatants
Andru J, Cosson J F, Caliman J P, Benoit E. 2013. Coumatetralyl resistance of Rattus tanezumi infesting oil palm plantations in Indonesia. Ecotoxicology, 22 (2): 377-386. | |
Aplin K P, Suzuki H, Chinen A A, Chesser R T, Have J T, Donnellan S C, Austin J, Frost A, Gonzalez J P, Herbreteau V, Catzeflis F, Soubrier J, Fang Y P, Robins J, Matisoo‑Smith E, Bastos A D S, Maryanto I, Sinaga M H, Denys C, Bussche R A V D, Conroy C, Rowe K, Cooper A. 2011. Multiple geographic origins of commensalism and complex dispersal history of black rats. PLoS ONE, 6 (11): e26357. | |
Bastos A D, Nair D, Taylor P J, Brettschneider H, Kirsten F, Mostert E, von Maltitz E, Lamb J M, van Hooft P, Belmain S R, Contrafatto G, Downs S, Chimimba C T. 2011. Genetic monitoring detects an overlooked cryptic species and reveals the diversity and distribution of three invasive Rattus congeners in South Africa. BMC Genet, 12: 26. | |
Bentley E W. 1972. A review of anticoagulant rodenticides in current use. Bulletin of the World Health Organizatin, 47 (3): 275-280. | |
Blasdell K, Cosson J F, Chaval Y, Herbreteau V, Douangboupha B, Jittapalapong S, Lundqvis A, Hugot J, Morand S, Buchy P. 2011. Rodent-borne hantaviruses in Cambodia, Lao PDR, and Thailand. EcoHealth, 8 (4): 432-443. | |
Boyle C M. 1960. Case of apparent resistance of Rattus norvegicus berkenhout to anticoagulant poisons. Nature, 188 (4749): 517. | |
Buckle A P, Smith R H. 1994. Rodent Pests and Their Control. Canberra: Australian Centre for International Agricultural Research, 163-174. | |
Buckle A. 2013. Anticoagulant resistance in the United Kingdom and a new guideline for the management of resistant infestations of Norway rats (Rattus norvegicus Berk.). Pest Management Science, 69 (3): 334-341. | |
Christensen T K, Lassen P, Elmeros M. 2012. High exposure rates of anticoagulant rodenticides in predatory bird species in intensively managed landscapes in Denmark. Archives of Environmental Contamination and Toxicology, 63 (3): 437-444. | |
Conroy C J, Rowe K C, Rowe K M C, Kamath P L, Aplin K P, Hui L, James D K, Moritz C, Patton J L. 2013. Cryptic genetic diversity in Rattus of the San Francisco Bay region, California. Biological Invasions, 15 (4): 741-758. | |
Díaz J C, Song Y, Moore A, Borchert J N, Kohn M H. 2010. Analysis of Vkorc1 polymorphisms in Norway rats using the roof rat as outgroup. BMC Genet, 11: 43. | |
Dong T Y. 2001. Application of Anticoagulant Rodenticide. Beijing: China Science and Technology Press. (in Chinese) | |
Edgar R C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32 (5): 1792-1797. | |
Gao Z X, Shi D Z, Guo Y W, Wu X P, Ji L L, Yang J G, Yuan Z Q. 2008. Testing of resistance of the striped field mouse of Beijing to warfarin. Chinese Journal of Vector Biology and Control, 19 (2): 90-92. (in Chinese) | |
Geduhn A, Esther A, Schenke D, Gabriel D, Jacob J. 2016. Prey composition modulates exposure risk to anticoagulant rodenticides in a sentinel predator, the barn owl. Science of the Total Environment, 544: 150-157. | |
Goulois J, Lambert V, Legros L, Benoit E, Lattard V. 2017. Adaptative evolution of the Vkorc1 gene in Mus musculus domesticus is influenced by the selective pressure of anticoagulant rodenticides. Ecology and Evolution, 7 (8): 2767-2776. | |
Greaves J H. 1967. Resistance to anticoagulants in rodents. Pest Managment Science, 2 (6): 276-279. | |
Greaves J H, Rennison B D. 1973. Population aspect of warfarin resistance in the brown rat, Rattus norvregicus . Mammal Review, 3 (2): 27-29. | |
Gryseels S, Leirs H, Makundi R, Goüy de Bellocq J. 2015. Polymorphism in Vkorc1 gene of natal multimammate mice, Mastomys natalensis, in Tanzania Sophie. Journal of Heredity, 106 (5): 637-643. | |
Guo S, Li G, Liu J, Wang J, Lu L, Liu Q. 2019. Dispersal route of the Asian house rat (Rattus tanezumi) on mainland China: insights from microsatellite and mitochondrial DNA. BMC Genet, 20: 11. | |
Hebert P D N, Cywinska A, Ball S L, DeWaard J R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270 (1512): 313-321. | |
Helgeland L. 1977. The submicrosomal site for the conversion of prothrombin precursor to biologically active prothrombin in rat liver. Biochim Biophys Acta, 499 (2): 181-193. | |
Himsworth C G, Parsons K L, Jardine C, Patrick D M. 2013. Rats, cities, people, and pathogens: a systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers. Vector-Borne and Zoonotic Diseases, 13 (6): 349-359. | |
Huang B H, Feng Z Y, Yue L F, Yao D D, Gao Z X, Wang D W, Liu X H. 2011. Warfarin resistance test and polymorphism screening in the VKORC1 gene in Rattus flavipectus . Journal of Pest Science, 84: 87-92. | |
Huang L Q, Guo X G, Speakman J R, Dong W G. 2013. Analysis of gamasid mites (Acari: Mesostigmata) associated with the Asian house rat, Rattus tanezumi (Rodentia: Muridae) in Yunnan Province, Southwest China. Parasitol Research, 112 (5): 1967-1972. | |
Ishizuka M, Tanikawa T, Tanaka K D, Heewon M, Okajima F, Sakamoto K Q, Fujita S. 2008. Pesticide resistance in wild mammals-mechanisms of anticoagulant resistance in wild rodents. Journal of Toxicological Sciences, 33 (3): 283-291. | |
Jones C R, Lorica R P, Villegas J M, Ramal A F, Horgan F G, Singleton G R, Stuart A M. 2017. The stadium effect: rodent damage patterns in rice fields explored using giving-up densities. Integrative Zoology, 12 (6): 438-445. | |
Kohn M H, Pelz H J, Wayne R K. 2003. Locus-specific genetic differentiation at Rw among warfarin-resistant rat (Rattus norvegicus) populations. Genetics, 164 (3): 1055-1070. | |
Li T, Chang C Y, Jin D Y, Lin P J, Khvorova A, Stafford D W. 2004. Identification of the gene for vitamin K epoxide reductase. Nature, 427 (6974): 541-544. | |
Marquez A, Khalil R A, Fourel I, Ovarbury T, Pinot A, Rosine A, Thalmensi G, Jaffory G, Kodjo A, Benoit E, Lattard V. 2019. Resistance to anticoagulant rodenticides in Martinique could lead to inefcient rodent control in a context of endemic leptospirosis. Scientific Reports, 9 (1): 13491. | |
Pelz H J, Rost S, Hünerberg M, Fregin A, Heiberg A C, Baert K, MacNicoll A D, Prescott C V, Walker A S, Oldenburg J, Müller C R. 2005. The genetic basis of resistance to anticoagulants in rodents. Genetics, 170 (4): 1839-1847. | |
Petterino C, Paolo B. 2001. Toxicology of various anticoagulant rodenticides in animals. Veterinary and Human Toxicology, 43 (6): 353-360. | |
Plyusnina A, Ibrahim I N, Plyusnin A. 2009. A newly recognized hantavirus in the Asian house rat (Rattus tanezumi) in Indonesia. Journal of General Virology, 90 ( Pt 1): 205-209. | |
Poplavskaya N S, Bannikova A A, Fang Y, Sheftel B I, Ushakova M V, Surov A V, Lebedev V S. 2018. Is the center of origin of long‑tailed hamster Cricetulus longicaudatus Milne-Edwards 1867 (Rodentia, Cricetidae) Located in Tibet? Doklady Biological Sciences, 479 (1): 70-73. | |
Redfern R, Gill J E. 1980. Laboratory evaluation of bromadiolone as a rodenticide for use against warfarin-resistant and non-resistant rats and mice. Journal of Hygiene (Lond), 84 (2): 263-268. | |
Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hörtnagel K, Pelz H J, Lappegard K, Seifried E, Scharrer I, Tuddenham E G, Müller C R, Strom T M, Oldenburg J. 2004. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature, 427 (6974): 537-541. | |
Rost S, Fregin A, Hünerberg M, Bevans C G, Müller C R, Oldenburg J.2005.Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin. Thrombosis and Haemostasis, 94 (4): 780-786. | |
Rowe F P, Plant C J, Bradfield A. 1981. Trials of the anticoagulant rodenticides bromadiolone and difenacoum against the house mouse (Mus musculus L.). Journal of Hygiene (Lond), 87 (2): 171-177. | |
Sadler J E. 2004. Medicine: K is for koagulation. Nature, 427 (6974): 493-494. | |
Stöck M, Reisch F, Elmeros M, Gabriel D, Kloas W, Kreuz E, Lassen P, Esther A. 2019. The potential of VKORC1 polymorphisms in Mustelidae for evolving anticoagulant resistance through selection along the food chain. PLoS ONE, 14 (8): e0221706. | |
Thijssen H H, Soute B A, Vervoort L M, Claessens J G. 2004. Paracetamol (acetaminophen)-warfarin interaction: NAPQ1, the toxic metabolite of paracetamol, is an inhibitor of enzymes in the vitamin K cycle. Thrombosis and Haemostasis, 92 (4): 797-802. | |
Vein J, Grandemange A, Cosson J F, Benoit E, Berny P J. 2011. Are water vole resistant to anticoagulant rodenticides following field treatments? Ecotoxicology, 20 (6): 1432-1441. | |
Wang J, Feng Z, Yao D, Sui J, Zhong W, Li M, Dai J. 2008. Warfarin resistance in Rattus losea in Guangdong Province, China. Pesticide Biochemistry and Physiology, 91: 90-95. | |
Wang J Z, Yan L, Wu H D, Kang X M. 2020. Study of alpine grassland degradation in northern Tibet based on an analytical hierarchy process. Chinese Journal of Applied and Environmentrl Biology, 26 (1): 17-24. (in Chinese) | |
Wu H X, Lu L, Meng F X, Guo Y H, Liu Q Y. 2017. Reports on national surveillance of rodents in China, 2006-2015. Chinese Journal Vector Biology and Control, 28 (6): 517-522. (in Chinese) | |
Yang X G, Wang T L, Zou B, Chang W Y, Hou Y. 2019a. Rodent diversity in the farmlands of Shanxi Province. Plant Protection, 45 (2): 138-142. (in Chinese) | |
Yang X G, Zhang J X, Zhang J Z, Wang T L, Zou B, Chang W Y, Hou Y, Liu J. 2019b. Investigation on distribution status and age structure of Rattus flavipectus population in Shanxi. Journal of Shanxi Agricuture Science, 47 (1): 106-108. (in Chinese) | |
Yi J R, Huang Y C, Wu J, Zhang S Y, Cai S W, Duan J H, Yin W X, Lin L F. 2005. Study on the resistance of commensal rodents to anticoagulant rodenticide in Qingyuan, Guangdong. Chinese Journal of Vector Biology and Control, 16 (4): 274-276. (in Chinese) | |
Zhang M W, Chen A G, Wang Y, Guo C, Liu H F, Li B. 2000. The biological characteristics of the buff‑breasted rats (Rattus flavipectus) in Yangtze Valley in China. Acta Theriologica Sinica, 20 (3): 200-211. (in Chinese) | |
Zhang M W, Wang K L, Wang Y, Guo C, Li B. 2004. Population dynamics of rodents after flood in middle reaches of the Yangtze River. Chinese Journal of Applied and Environmental Biology, 10 (2): 184-188. (in Chinese) | |
Zhang S Y, Hu J, Liang L, Pan R W, Mo Z D, Cen Q Q. 2002. Resistance of Rattus flavipectus and Rattus norvegicus to anticoagulants in Zhanjiang, China. Chinese Journal of Vector Biology and Control, 13 (1): 66-68. (in Chinese) | |
Zheng Z M, Jiang Z K, Chen A G. 2008. Conspectus of Glires. Shanghai: Shanghai Jiao Tong University Press. (in Chinese) | |
王金枝, 颜亮, 吴海东, 康晓明. 2020. 基于层次分析法研究藏北高寒草地退化的影响因素. 应用与环境生物学报, 26 (1): 17-24. | |
张世炎, 胡杰, 梁练, 盘瑞伟, 莫卓鼎, 岑清泉. 2002. 湛江地区黄胸鼠和褐家鼠对抗凝血剂的抗药性. 中国媒介生物学及控制杂志, 13 (1): 66-68. | |
张美文, 王克林, 王勇, 郭聪, 李波. 2004. 长江中游农区洪涝灾害后鼠类数量动态. 应用与环境生物学报, 10 (2): 184-188. | |
张美文, 陈安国, 王勇, 郭聪, 刘辉芬, 李波. 2000. 长江流域黄胸鼠生物学特性观察. 兽类学报, 20 (3): 200-211. | |
吴海霞, 鲁亮, 孟凤霞, 郭玉红, 刘起勇. 2017. 2006—2015 我国鼠类监测报告. 中国媒介生物学及控制杂志, 28 (6): 517-522. | |
易建荣, 黄亿初, 吴军, 张世炎, 蔡松武, 段金花, 阴伟雄, 林立丰. 2005. 清远市家栖鼠对第一代抗凝血灭鼠剂抗药性研究. 中国媒介生物学及控制杂志, 16 (4): 274-276. | |
郑智民, 姜志宽, 陈安国. 2008. 啮齿动物学. 上海: 上海交通大学出版社. | |
杨新根, 王庭林, 邹波, 常文英, 侯玉. 2019a. 山西省农田啮齿动物多样性研究. 植物保护, 45 (2): 138-142. | |
杨新根, 张健旭, 张建珍, 王庭林, 邹波, 常文英, 侯玉, 刘娇. 2019b. 山西省黄胸鼠种群的分布现状及年龄结构调查. 山西农业科学, 47 (1): 106-108. | |
高志祥, 施大钊, 郭永旺, 吴新平, 嵇莉莉, 杨建国, 袁志强. 2008. 北京地区黑线姬鼠对杀鼠灵抗药性的测定. 中国媒介生物学及控制杂志, 19 (2): 90-92. | |
董天义. 2001. 抗凝血灭鼠剂应用研究. 北京: 中国科学技术出版社. |
[1] | 操康琳, 陶梦凡, 任月, 侯玉, 贾变桃, 杨新根. 人工饲喂对长尾仓鼠肠道菌群组成的影响[J]. 兽类学报, 2024, 44(2): 195-208. |
[2] | 陈燕, 岳亚先, 王涛, 甄磊, 李冬慧, 陶润宇, 宋英, 王登. 褐家鼠和黄胸鼠体型和头骨物种鉴定特征值筛选[J]. 兽类学报, 2023, 43(3): 322-332. |
[3] | 郭敏, 梁捷, 何向阳, 欧伟新, 彭定雄, 麦展昭, 黄海涛, 张礼标. 澳门地区褐家鼠对溴鼠灵的抗性检测及其Vkorc1基因多态性分析[J]. 兽类学报, 2022, 42(6): 698-704. |
[4] | 仝磊, 路纪琪. 黄胸鼠对假海桐和截头石栎种子的贮藏和取食[J]. , 2010, 30(3): 270-277. |
[5] | 孙 毅,郭天宇,董天义,赵彤言. 应用凝血反应检测杀鼠灵抗药性褐家鼠的可行性研究[J]. , 2006, 26(2): 176-182. |
[6] | 张美文 王勇 郭聪 李波. 洞庭平原农房家鼠的栖息格局[J]. , 2003, 23(2): 145-152. |
[7] | 张美文, 陈安国, 王勇, 郭聪, 刘辉芬, 李波. 长江流域黄胸鼠生物学特性观察[J]. , 2000, 20(3): 200-211. |
[8] | 张美文, 郭聪,王勇,刘辉芬,李波,陈安国. 洞庭平原黄胸鼠种群年龄组的划分[J]. , 1998, 18(4): 268-276. |
[9] | 洪朝长, 陈小彬, 陈金贤, 陈学榕. 福建莆田地区家栖鼠类数量动态分析[J]. , 1993, 13(2): 149-150. |
[10] | 杨光荣, 赵侯, 熊孟韬, 张开云. 云南省滇西地区黄胸鼠种群年龄研究初报[J]. , 1992, 12(1): 75-77. |
[11] | 周虞灿, 邵邻相, 何新霞. 三种鼠组织超氧化物歧化酶和乳酸脱氢酶同工酶的比较研究[J]. , 1990, 10(4): 299-303. |
[12] | 周虞灿, 邵邻相, 何新霞. 三种鼠科动物血浆超氧化物歧化酶和乳酸脱氢酶以及血浆蛋白成分的比较分析[J]. , 1990, 10(3): 231-234. |
[13] | 陈安国1, 袁主中1, 张建云1, 王勇1, 郭聪1, 程敬葆2, 谭树林3. 湖南农业鼠害防治技术研究 Ⅰ.害鼠的种类、害区和与防治有关的生物学特性[J]. , 1988, 8(3): 215-223. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||