方法与技术

基于双模型融合的大熊猫头部图像分割

  • 周章玉 ,
  • 侯佳萍 ,
  • 刘鹏 ,
  • 陈鹏 ,
  • 段昶
展开
  • 1 西南石油大学电气信息学院, 成都 610500;
    2 成都大熊猫繁育研究基地, 四川省濒危野生动物保护生物学重点实验室, 成都 610086
周章玉(1999-),女,硕士研究生,主要从事深度学习研究.

收稿日期: 2021-11-10

  修回日期: 2022-03-29

  网络出版日期: 2023-01-10

基金资助

四川省自然科学基金(2022NSFC0020);成都大熊猫繁育研究基地开放课题(2021KCPB-03)

Giant panda head image segmentation based on dual model fusion

  • ZHOU Zhangyu ,
  • HOU Jiaping ,
  • LIU Peng ,
  • CHEN Peng ,
  • DUAN Chang
Expand
  • 1 School of Electrical Information, Southwest Petroleum University, Chengdu 610500, China;
    2 Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Cheng-du 610086, China

Received date: 2021-11-10

  Revised date: 2022-03-29

  Online published: 2023-01-10

摘要

在大熊猫(Ailuropoda melanoleuca)的迁地保护和种群饲养管理中,及时、快速地进行个体识别和行为监测,对其健康管理具有至关重要的作用。圈养大熊猫健康状况通常由专门的饲养人员肉眼观测,人力成本高、效率低并且缺乏时效性。基于图像的动物个体识别与行为分析技术效率高、时间成本低,已经成为新的监测发展趋势。已有研究提出,通过大熊猫面部图像的检测和分析,可实现个体识别和行为分类。但该方法依然存在检测精度不足导致识别准确率难以提升的问题。本文提出一种基于YOLOv3和Mask R-CNN的双模型融合方法,实现了大熊猫头部图像分割和精准检测。包含3个部分:YOLOv3完成头部检测,Mask R-CNN完成大熊猫轮廓分割,然后将两个模型的输出进行交并比融合。结果显示,头部检测准确率为82.6%,大熊猫轮廓分割准确率为95.2%,总体头部轮廓分割准确率为87.1%。该方法对大熊猫头部图像的识别率和分割准确率高,为大熊猫的个体识别、性别分类提供了帮助,为行为分析提供了技术参考。

本文引用格式

周章玉 , 侯佳萍 , 刘鹏 , 陈鹏 , 段昶 . 基于双模型融合的大熊猫头部图像分割[J]. 兽类学报, 2023 , 43(1) : 82 -88 . DOI: 10.16829/j.slxb.150635

Abstract

In the ex situ conservation and population management of giant pandas (Ailuropoda melanoleuca), timely and rapid individual identification and behavior monitoring play a crucial role in health supervision. The health status of captive giant pandas is usually observed by specialized breeders, which have high labor costs, low efficiency, and lack of timeliness. Therefore, efficient and cheap image-based identity recognition and behavior analysis has become a new development trend. Existing studies have proposed to realize it by detecting and analyzing facial images of giant pandas. However, this type of method still has the problem of insufficient detection accuracy, which makes it difficult to improve the recognition performance. We propose a dual model fusion method based on YOLOv3 and Mask R-CNN to achieve the segmentation and accurate detection of giant panda head images. It includes three parts:YOLOv3 completes head detection, Mask R-CNN completes panda contour segmentation, and then fuses the outputs of the two models. Experimental results show that the accuracy of head detection, giant panda and head contour segmentation are 82. 6%, 95. 2%, and 87. 1%, respectively. Our method has high detection and segmentation accuracy for the giant panda head images. It provides help for individual identification and gender classification of giant pandas and provides technical reference for behavior analysis.

参考文献

Chen J, Wen Q, Zhuo C L, Mete M. 2012a. A novel approach towards head detection of giant pandas in the free-range environment. Chongqing:International Congress on Image and Signal Process-ing, 814-818.
Chen J, Wen Q, Zhuo C L, Mete M. 2012b. Pose recognition of giant pandas based on gradient shapes. Leshan:International Confer-ence on Computational Problem-Solving, 358-362.
Chen J, Wen Q, Qu W M, Mete M. 2012c. Panda facial region detec-tion based on topology modelling. Chongqing:International Con-gress on Image and Signal Processing, 911-915.
Chen P, Swarup P, Matkowski W M, Kong A W K, Han S, Zhang Z, Rong H. 2020. A study on giant panda recognition based on im-ages of a large proportion of captive pandas. Ecology and Evolu-tion, 10 (7):3561-3573.
Ding Q Q, Yu J H, Xie C Y, Xu C Z, Sun Q, Bi J Z, Chu Q P, Zhou Y M, Wu F. 2019. A preliminary study on the maternal behavior of female giant pandas in Shanghai Wild Animal Park. Acta Therio-logica Sinica, 39 (3):302-310. (in Chinese)
He K M, Gkioxari G, Dollar P, Girshick R. 2020. Mask R-CNN. Transactions on Pattern Analysis & Machine Intelligence, 42 (2):386-397.
He K M, Zhang X Y, Ren S Q, Sun J. 2016. Deep residual learning for image recognition. Las Vegas:Conference on Computer Vi-sion and Pattern Recognition (CVPR), 770-778.
He Y G, Song S X, Ma K, Feng L, Li D S, Liu D Z. 2015. Translocat-ing two lactating giant pandas and their cubs after behavioral training did not impair maternal behavior:a case study. Acta The-riologica Sinica, 35 (3):342-347. (in Chinese)
Hou J, He Y X, Yang H B, Connor T, Gao J, Wang Y J, Zeng Y C, Zhang J D, Huang J Y, Zheng B C, Zhou S Q. 2020. Identifica-tion of animal individuals using deep learning:A case study of gi-ant panda. Biological Conservation, 242. DOI:10. 1016/j. bio-con. 2020. 108414.
Kühl S H, Burghardt T. 2013. Animal biometrics:quantifying and de-tecting phenotypic appearance. Trends in Ecology & Evolution(Amsterdam), 28 (7):432-441.
Lin T Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S. 2017. Feature pyramid networks for object detection. Honolulu:Confer-ence on Computer Vision and Pattern Recognition (CVPR), 936-944.
Redmon J, Divvala S, Girshick R, Farhadi A. 2016. You only look once:unified, real-time object detection. Las Vegas:Conference on Computer Vision and Pattern Recognition (CVPR), 779-788.
Redmon J, Farhadi A. 2018. YOLOv3:An Incremental Improvement. https://arXiv.org/abs/1804.02767.
Ren S, He K, Girshick R, Sun J. 2017. Faster R-CNN:towards realtime object detection with region proposal networks. Transac-tions on Pattern Analysis and Machine Intelligence, 39 (6):1137-1149.
Swarup P, Chen P, Hou R, Que P J, Liu P, Kong A W K. 2021. Giant panda behaviour recognition using images. Global Ecology and Conservation, 26:e01510.
Wang H N, Su H, Chen P, Hou R, Zhang Z H, Xie W Y. 2019. Learn-ing deep features for giant panda gender classification using face images. Seoul:International Conference on Computer Vision Workshop (ICCVW), 27-28.
Yang K X, Peng W P, Zhang H, Zhuo G F, Wu K J, Yin H, Yuan B, Chen M, Xie Y. 2019. Research on the breeding of captive red panda (Ailurus fulgens). Chinese Journal of Wildlife, 40 (1):177-181. (in Chinese)
Zhang B W, Li M, Zhang Z J, Goossens B, Zhu L F, Zhang S N, Hu J C, Bruford M W, Wei F W. 2007. Genetic viability and popula-tion history of the giant panda, putting an end to the "evolutionary dead end"? Molecular Biology and Evolution, 24 (8):1801-1810.
Zhou Z. 2019. Research on method of reading time of pointer watch based on convolutional neural network. Master thesis. Changsha:Hunan University. (in Chinese)
丁乔棋, 俞锦华, 谢春雨, 徐春忠, 孙强, 毕靖征, 褚青坡, 周应敏, 吴锋. 2019. 上海野生动物园大熊猫育幼行为初步研究. 兽类学报, 39 (3):302-310.
杨奎兴, 彭文培, 张皓, 卓桂富, 吴孔菊, 尹洪, 袁博, 陈敏, 谢意. 2019. 圈养小熊猫繁殖初探. 野生动物学报, 40 (1):177-181.
何永果, 宋仕贤, 马凯, 冯莉, 李德生, 刘定震. 2015. 哺乳期圈养雌性大熊猫圈舍转移及其育幼行为变化. 兽类学报, 35 (3):342-347.
周珍. 2019. 基于卷积神经网络的指针手表读时方法研究. 长沙:湖南大学硕士学位论文.
黄佳琪, 王雪琴, 曾陈颖, 肖江. 2014. 基于灰度空间大熊猫图像分割方法研究. 科技资讯, 11 (7):11-14.
文章导航

/