研究论文

人工饲喂对长尾仓鼠肠道菌群组成的影响

  • 操康琳 ,
  • 陶梦凡 ,
  • 任月 ,
  • 侯玉 ,
  • 贾变桃 ,
  • 杨新根
展开
  • 山西农业大学植物保护学院, 农业有害生物综合治理山西省重点实验室, 太原 030031
操康琳(1999-),女,硕士研究生,主要从事啮齿动物生物学及防控技术研究.

收稿日期: 2023-04-28

  修回日期: 2024-01-29

  网络出版日期: 2024-04-03

基金资助

科技基础资源调查专项(2019FY100300);山西省博士毕业生来晋工作奖励经费科研项目(SXBYK2022123);山西农业大学“引进人才科研启动工程”项目(2023BQ46);山西农业大学植物保护学院科研培育创新项目(ZBXY23B-14)

Effects of artificial feeding on the composition of gut microbiome of longtailed hamster

  • CAO Kanglin ,
  • TAO Mengfan ,
  • REN Yue ,
  • HOU Yu ,
  • JIA Biantao ,
  • YANG Xingen
Expand
  • Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China

Received date: 2023-04-28

  Revised date: 2024-01-29

  Online published: 2024-04-03

摘要

食物变化是引起小型哺乳动物肠道菌群改变的关键因素。野生动物由野外转至室内饲养会经历剧烈的生活方式变化,而目前对人工饲喂驱动其肠道微生物群落结构的演替过程还不完全了解。为明确人工饲喂对小型哺乳动物肠道菌群组成的影响,于 2022 年夏季 (7—9 月) 在山西省吕梁市离石区 (LS)、临汾市隰县 (XX)、晋中市左权县 (ZQ) 3 个地区应用笼捕法捕获长尾仓鼠 (Cricetulus longicaudatus) 活体,基于 16S rDNA 测序技术分析不同生态环境中其肠道菌群的差异,并探究相同人工饲喂条件下长尾仓鼠肠道菌群的演替过程。结果表明:长尾仓鼠肠道菌群在野外环境中,XX 和 ZQ 种群的厚壁菌门显著富集,LS 种群的拟杆菌门显著富集,肠单胞球菌属 (Intestinimonas) 为 3 个种群的共有优势属。相同人工饲喂 35 d 后,拟杆菌门在 3 个种群显著富集且相对丰度趋于一致,ZQ 种群 Muribaculacea 的相对丰度为 48. 85%,显著高于野外环境。本研究说明不同生态环境中长尾仓鼠肠道菌群具有差异性。经长期相同人工饲喂后,其肠道菌群的相似性显著增加,说明饮食变化对长尾仓鼠肠道菌群多样性及群落组成具有较大影响,而长尾仓鼠肠道菌群组成可能对宿主营养代谢具有重要作用。该结果为更好地了解长尾仓鼠肠道菌群对不同环境的生态适应性,并应用食物调控有害啮齿动物数量提供了科学依据。

本文引用格式

操康琳 , 陶梦凡 , 任月 , 侯玉 , 贾变桃 , 杨新根 . 人工饲喂对长尾仓鼠肠道菌群组成的影响[J]. 兽类学报, 2024 , 44(2) : 195 -208 . DOI: 10.16829/j.slxb.150808

Abstract

The alteration in diet is a pivotal factor contributing to modifications in the gut microbiota of small mammals. When transitioning from their natural habitat to captivity, wild animals undergo drastic changes in their lifestyle, however, the succession processes underlying the establishment of intestinal microbial community structure from artificial feeding remain incompletely elucidated. To clarify the effects of artificial feeding on the composition of gut microbiome of small mammals, natural populations of long-tailed hamster (Cricetulus longicaudatus) were captured using cage trapping from Lishi District (LS), Xi County (XX) and Zuoquan County (ZQ) in Shanxi Province in summer (from July to September) of 2022. Based on 16S rDNA high-throughput sequencing, we analyzed the differences of intestinal flora in different ecological environments, and explored the succession process of artificial feeding on the gut microbial composition. The results showed that Firmicutes were significantly enriched in XX and ZQ populations while bacteroides were significantly enriched in LS population. Intestinimonas is a common dominant genus in the three populations. After 35 days of artificial feeding, Bacteroides were significantly enriched in the three populations and their relative abundance tended to be consistent. The relative abundance of Muribaculacea in ZQ population was 48. 85%, which was significantly higher than that in the wild environment. Our study shows that the diversity of the gut microbiota of C. longicaudatus is different in distinct ecological environments. After long-term artificial feeding, the similarity of gut microbiome of different C. longicaudatus populations increased significantly, indicating that diet change has a great impact on the diversity and community composition of gut microbiome, and the composition of gut microbiome of C. longicaudatus may play an important role in nutrition metabolism. The results provided a scientific basis for a better understanding of the ecological adaptability of the intestinal microbiome of C. longicaudatus, and the utilization of food as a means to regulate the population of detrimental.

参考文献

Bäckhed F, Ding H, Wang T, Hooper L V, Koh G Y, Nagy A, Semen kovich C F, Gordon J I. 2004. The gut microbiota as an environ mental factor that regulates fat storage. Proceedings of the National Academy of Sciences, 101 (44):15718-15723.
Becker A A, Hesta M, Hpllants J, Janssens G P, Huys G. 2014. Phylo genetic analysis of faecal microbiota from captive cheetahs re veals underrepresentation of Bacteroidetes and Bifidobacteriaceae. BMC Microbiology, 14 (1):43. DOI:10. 1186/1471-2180-14-43.
Bui T, Shetty S A, Lagkouvardos I, Ritari J, Chamlagain B, Douillard F P, Paulin L, Piironen V, Clavel T, Plugge C M. 2016. Comparative genomics and physiology of the butyrate producing bacterium Intestinimonas butyriciproducens. Environmental Microbiology Reports, 8 (6):1024-1037.
Burns A R, Stephens W Z, Stagaman K, Wong S, Rawls J F, Guillemin K, Bohannan B J. 2016. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. The ISME Journal, 10 (3):655-664.
Carey H V, Walters W A, Knight R. 2013. Seasonal restructuring of the ground squirrel gut microbiota over the annual hibernation cycle. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 304 (1):R33-R42.
Chen S F, Zhou Y Q, Chen Y R, Gu J. 2018. Fastp:an ultra-fast allinone FASTQ preprocessor. Bioinformatics, 34 (17):i884-i890.
Coyte K Z, Schluter J, Foster K R. 2015. The ecology of the microbiome:networks, competition, and stability. Science, 350 (6261):663-666.
Ding Y, Wu Q, Hu Y B, Wang X, Nie Y G, Wu X P, Wei F W. 2017.Advances and prospects of gut microbiome in wild mammals.Acta Theriologica Sinica, 37 (4):399-406. (in Chinese)
Edgar R C. 2013. UPARSE:highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10 (10):996-998.
Faith J J, Guruge J L, Charbonneau M, Subramanian S, Seedorf H, Goodman A L, Clemente J C, Knight R, Heath A C, Leibel R L, Rosenbaum M, Gordon J I. 2013. The long-term stability of the human gut microbiota. Science, 341 (6141):1237439.
Feng J, Shen Z M, Wang S C, Lin J X, Bai X, Xie J Y. 2018. Comparative analysis of intestinal flora of Microtusfortis living under laboratory feeding and wild survival conditions. Acta Laboratorium Animalis Scientia Sinic, 26 (2):188-194. (in Chinese)
Feng T S, Yu Q L, Zhou R, Wang Y J, Su J H, Li H. 2020. The comparison of gut microbiome and common antibiotic resistance genes between plateau pika and plateau zokor. Chinese Journal of Wildlife, 41 (4):897-911. (in Chinese)
Fernando S C, Purvis H T, Najar F Z, Sukharnikov L O, Krehbiel C R, Nagaraja T G, Roe B A, DeSilva U. 2010. Rumen microbial population dynamics during adaptation to a high-grain diet. Applied and Environmental Microbiology, 76 (22):7482-7490.
Flint H J, Scott K P, Duncan S H, Louis P, Forano E. 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3(4):289-306.
Guan Y, Yang H T, Han S Y, Feng L M, Wang T M, Ge J P. 2017.Comparison of the gut microbiota composition between wild and captive sika deer (Cervus nippon hortulorum) from feces by highthroughput sequencing. AMB Express, 7 (1):212.
Ishaq S L, Wright A D. 2014. High-throughput DNA sequencing of the ruminal bacteria from moose (Alcesalces) in Vermont, Alaska, and Norway. Microbial Ecology, 68 (2):185-195.
Jiang F, Song P F, Zhang J J, Gao H M, Wang H J, Cai Z Y, Liu D X, Zhang T Z. 2023. Comparative analysis of gut microbial composition and functions of forest musk deers in different breeding centres. Acta Theriologica Sinica, 43 (2):129-140. (in Chinese)
Kohl K D, Skopec M M, Dearing M D. 2014. Captivity results in disparate loss of gut microbial diversity in closely related hosts.Conserv Physiol, 2 (1):cou009.
Kohl K D, Varner J, Wilkening J L, Dearing M D. 2017. Gut micro bial communities of American pikas (Ochotona princeps):Evi dence for phylosymbiosis and adaptations to novel diets. Journal of Animal Eoclogy, 87 (2):323-330.
Ley R E, Hamady M, Lozupone C, Turnbaugh P J, Ramey R R, Bircher J S, Schlegel M L, Tucker T A, Schrenzel M D, Knight R, Gordon J I. 2008. Evolution of mammals and their gut microbes. Science, 320 (5883):1647-1651.
Li S T, Zhang C, Gu Y Y, Chen L, Ou S Y, Wang Y, Peng X C. 2015.
Lean rats gained more body weight than obese ones from a highfibre diet. The British Journal of Nutrition, 114 (8):1188-1194.
Lin H, An Y P, Hao F H, Wang Y L, Tang H R. 2016. Correlations of fecal metabonomic and microbiomic changes induced by high-fat diet in the Pre-Obesity State. Scientific Reports, 6:21618.
Liu C H, Chiu C H, Wang S W, Cheng W. 2012. Dietary administration of the probiotic, Bacillus subtilis E20, enhances the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides. Fish & Shellfish Immunology, 33 (4):699-706.
Liu Y, Zhao X Q, Yin Y Q, Li X Y, Chen F S, Zhang H M, Wang Y, Shen A D. 2021. Differences in the diversity and community structure of intestinal bacteria in four geographic populations of fall armyworm Spodoptera frugiperda in Yunnan Province. Journal of Plant Protection, 48 (6):1244-1253. (in Chinese)
Luo Y H, Zhang L, Li H, Smidt H, Wright A D G, Zhang K, Ding X M, Zeng Q F, Bai S P, Wang J P, Li J, Zheng P, Tian G, Cai J Y, Chen D W. 2017. Different types of dietary fibers trigger specific alterations in composition and predicted functions of colonic bacte rial communities in BALB/c mice. Front Microbiol, 8:966.
Magoč T, Salzberg S L. 2011. FLASH:fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27 (21):2957-2963.
Mao M, Yang M, Liu X Y. 2022. Effects of hibernation on cecal mi crobiota in Daurian ground squirrel. Acta Theriologica Sinica, 42(4):420-431. (in Chinese)
Martínez-Mota R, Kohl K D, Orr T J, Denise D M. 2020. Natural diets promote retention of the native gut microbiota in captive ro dents. The ISME Journal, 14 (1):67-78.
Mattila H R, Rios D, Walker-Sperling V E, Roeselers G, Newton I L G. 2012. Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS ONE, 7 (3):e32962.
Maurice C F, Knowles S, Ladau J, Pollard K S, Fenton A, Pedersen A B, Turnbaugh P J. 2015. Marked seasonal variation in the wild mouse gut microbiota. The ISME Journal, 9 (11):2423-2434.
Montllor C B, Maxmen A, Purcell A H. 2002. Facultative bacterial en dosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecological Entomology, 27 (2):189-195.
Nayak S K. 2010. Probiotics and immunity:a fish perspective. Fish& Shellfish Immunology, 29 (1):2-14.
Parks B W, Nam E, Org E, Kostem E, Norheim F, Hui S T, Pan C, Civelek M, Rau C D, Bennett B J, Mehrabian M, Ursell L K, He A, Castellani L W, Zinker B, Kirby M, Drake T A, Drevon C A, Knight R, Gargalovic P, Kirchgessner T, Eskin E, Lusis A J. 2013. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metabolism, 17 (1):141-152.
Poplavskaya N S, Bannikova A A, Fang Y, Sheftel B I, Ushakova M V, Surov A V, Lebedev V S. 2018. Is the center of origin of longtailed hamster Cricetulus longicaudatus Milne-Edwards 1867 (Rodentia, Cricetidae) located in Tibet? Doklady Biological Sciences, 479 (1):70-73.
Qi H W, Xiang Z T, Han G Q,Yu B, Chen D W. 2011. Effects of different dietary protein sources on cecal microflora in rats. African Journal of Biotechnology, 10 (19):3704-3708.
Ren S E, Nan X N, Xu M, Zou Y, Liang N N, Shi J N, Han C X. 2020. Comparison of intestinal bacterial diversity of Gansu zokor under wild and artificial feeding conditions. Acta Microbiologica Sinica, 60 (4):826-838. (in Chinese)
Round J L, Mazmanian S K. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nature Neviews Immunology, 9 (5):313-323.
Schmidt E, Mykytczuk N, Schulte-Hostedde A I. 2019. Effects of the captive and wild environment on diversity of the gut microbiome of deer mice (Peromyscus maniculatus). The ISME Journal, 13(5):1293-1305.
Schubert A M, Sinani H, Schloss P D. 2015. Antibiotic-induced al terations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile. Microbial Bi ology, 6 (4):e00974.
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett W S, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biology, 12 (6):R60.
Sekirov I, Tam N M, Jogova M, Robertson M L, Li Y, Lupp C, Finlay B B. 2008. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility toenteric infection. Infection and Immunity, 76 (10):4726-4736.
Shade A, Peter H, Allison S D, Baho D L, Berga M, Bürgmann H, Huber D H, Langenheder S, Lennon J T, Martiny J B, Matulich K L, Schmidt T M, Handelsman J. 2012. Fundamentals of microbial community resistance and resilience. Front Microbiol, 3:417.
Sonnenburg E D, Smits S A, Tikhonov M, Higginbottom S K, Wingreen N S, Sonnenburg J L. 2016. Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529 (7585):212-215.
Stevenson T J, Duddleston K N, Buck C L. 2014. Effects of season and host physiological state on the diversity, density, and activity of the Arctic ground squirrel cecal microbiota. Applied and Environmental Microbiology, 80 (18):5611-5622.
Trevelline B K, Fontaine S S, Hartup B K, Kohl K D. 2019. Conservation biology needs a microbial renaissance:a call for the consideration of host-associated microbiota in wildlife management practices. Proceedings of the Royal Society B, 286 (1895):20182448.
Tsuchida T, Koga R, Fukatsu T. 2004. Host plant specialization gov erned by facultative symbiont. Science, 303 (5666):1989-1989.
Turnbaugh P J, Ridaura V K, Faith J J, Rey F E, Knight R, Gordon J I. 2009. The effect of diet on the human gut microbiome:a metagenomic analysis in humanized gnotobiotic mice. Science Translational Medicine, 1 (6):6-14.
Wang Q, Garrity G M, Tiedje J M, Cole J R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16):5261-5267.
Wu G D, Chen J, Hoffmann C, Bittinger K, Chen Y Y, Keilbaugh S A, Bewtra M, Knights D, Walters W A, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman F D, Lewis J D. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science, 334 (6052):105-108.
Yang X G, Liu W, Zou B, Chang W Y, Wang T L. 2021. Distribution pattern and spatiotemporal dynamics of rodent communities in the Loess Gulled-Hilly Area. Journal of Plant Protection, 48 (4):891-899. (in Chinese)
Yang X, Wang T, Guo H, Yang J, Zou B, Zhang J. 2022. Genetic diversity and population structure of the long-tailed hamster Cricetulus longicaudatus in Shanxi Province, China. Genes & Genetic systems, 96 (5):237-246.
Yu Q L, Li G L, Li H. 2022. Two community types occur in gut microbiota of large-sample wild plateau pikas (Ochotona cur zoniae). Integrative Zoology, 17 (3):366-378.
Zhang L, Tang X, Ren S, Zhao Y, Zhang Y. 2022. Effects of captivity on the assembly process of microbiota communities of plateau pikas. Acta Theriologica Sinica, 42 (5):519-530. (in Chinese)
Zheng S W, Song S Y. 2010. Mammals in Qinling Mountain Area.Beijing:China Forestry Publishing House. (in Chinese)
Zhou F, Pang Z C, Yu X Q, Wang X Y. 2020. Insect gut microbiota re search:progress and applications. Chinese Journal of Applied Entomology, 57 (3):600-607. (in Chinese)
丁赟, 吴琦, 胡义波, 王潇, 聂永刚, 吴小平, 魏辅文. 2017. 野生哺乳动 物 肠 道 微 生 物 组 研 究 进 展 与 展 望. 兽 类 学 报, 37 (4):399-406.
毛敏, 杨明, 刘新宇. 2022. 冬眠对达乌尔黄鼠盲肠菌群的影响. 兽类学报, 42 (4):420-431.
冯天舒, 俞巧玲, 周蕊, 王逸洁, 苏军虎, 李欢. 2020. 高原鼠兔和高原鼢鼠肠道微生物组及常见抗生素抗性基因的比较. 野生动物学报, 41 (4):897-911.
冯洁, 沈志敏, 王胜昌, 林金杏, 柏熊, 谢建云. 2018. 实验室饲养和野外生存条件下东方田鼠肠道菌群的多样性. 中国实验动物学报, 26 (2):188-194.
任世恩, 南小宁, 许淼, 邹垚, 梁南楠, 石建宁, 韩崇选. 2020. 野生和人工饲喂条件下甘肃鼢鼠肠道细菌多样性比较. 微生物学报, 60 (4):826-838.
刘莹, 赵雪晴, 尹艳琼, 李向永, 陈福寿, 张红梅, 王燕, 谌爱东. 2021. 云南省四个草地贪夜蛾种群肠道细菌群落多样性及差异分析. 植物保护学报, 48 (6):1244-1253.
江峰, 宋鹏飞, 张婧捷, 高红梅, 汪海静, 蔡振媛, 刘道鑫, 张同作. 不同养殖场林麝肠道微生物组成和功能的差异. 2023. 兽类学报, 43 (2):129-140.
杨新根, 刘炜, 邹波, 常文英, 王庭林. 2021. 典型黄土残塬沟壑区啮齿动物群落分布格局及其时空动态. 植物保护学报, 48 (4):891-899.
张良志, 唐显江, 任世恩, 赵雅琪, 张堰铭. 2022. 室内饲养对高原鼠兔肠道微生物群落构建过程的影响. 兽类学报, 42 (5):519-530.
周帆, 庞志倡, 余小强, 汪肖云. 2020. 昆虫肠道微生物的研究进展和应用前景. 应用昆虫学报, 57 (3):600-607.
郑生武, 宋世英. 2010. 秦岭兽类志. 北京:中国林业出版社.
文章导航

/