兽类学报 ›› 2025, Vol. 45 ›› Issue (2): 137-151.DOI: 10.16829/j.slxb.151009
• 综述 •
刘莹莹1, 冯江1,2, 江廷磊1
收稿日期:
2024-08-29
修回日期:
2024-12-31
发布日期:
2025-04-01
通讯作者:
冯江, E-mail:fengj@nenu.edu.cn;江廷磊, E-mail:jiangtl730@nenu.edu.cn
作者简介:
刘莹莹(1993-),女,博士,主要从事动物行为生态与保护生物学研究.
基金资助:
LIU Yingying1, FENG Jiang1,2, JIANG Tinglei1
Received:
2024-08-29
Revised:
2024-12-31
Published:
2025-04-01
摘要: 蝙蝠在生态系统中扮演着多重角色,通过多种生态系统服务对环境和人类社会产生了深远影响。本文总结蝙蝠生态系统服务的研究现状并对未来进行展望,重点探讨蝙蝠在供给服务、调节服务、文化服务和支持服务中的作用。在供给服务方面,蝙蝠为农业和医药领域提供了宝贵资源,特别是蝙蝠粪便(夜明砂),不仅是传统中药的重要组成,还可以作为高效的有机肥料,显著提高土壤质量和作物产量。此外,蝙蝠的生物特性,如唾液中的抗凝血蛋白质和抗病毒成分,为新药研发提供了重要的基础,推动了生物技术和医学的创新。在调节服务方面,食虫蝙蝠不仅能够通过捕食作用减少农业害虫和降低农药的使用量,还能通过捕食风险效应对昆虫营造“恐惧景观”,改变猎物的行为和生理,进而降低其适合度。食果蝙蝠则能够为植物授粉和传播种子,提高作物生产的可持续性,促进生态系统健康。在文化服务方面,蝙蝠在中西方文化中均具有重要象征意义,并通过生态旅游为当地经济做出重要贡献。在支持服务方面,蝙蝠通过种子传播、植物授粉和养分循环,维持生态系统的健康与稳定。本文进一步展望了未来研究方向,提出保护蝙蝠及其生态系统服务功能的重要性,以应对全球环境变化带来的挑战,促进人类社会的可持续发展。
中图分类号:
刘莹莹, 冯江, 江廷磊. 蝙蝠的生态系统服务研究进展[J]. 兽类学报, 2025, 45(2): 137-151.
LIU Yingying, FENG Jiang, JIANG Tinglei. Research progress on ecosystem services provided by bats[J]. ACTA THERIOLOGICA SINICA, 2025, 45(2): 137-151.
Abram P K, Brodeur J, Urbaneja A, Tena A. 2019. Nonreproductive effects of insect parasitoids on their hosts. Annual Review of Ento-mology, 64:259-276. Aguiar L M S, Bueno-Rocha I D, Oliveira G, Pires E S, Vasconcelos S, Nunes G L, Frizzas M R, Togni P H B. 2021. Going out for dinner-The consumption of agriculture pests by bats in urban ar-eas. PLoS ONE, 16 (10). DOI:10. 1371/journal. pone. 0258066. Aizpurua O, Budinski I, Georgiakakis P, Gopalakrishnan S, Ibanez C, Mata V, Rebelo H, Russo D, Szodoray-Paradi F, Zhelyazkova V, Zrncic V, Gilbert M T P, Alberdi A. 2018. Agriculture shapes the trophic niche of a bat preying on multiple pest arthropods across Europe:evidence from DNA metabarcoding. Molecular Ecology, 27 (3):815-825. Alpízar P, Schneider J, Tschapka M. 2020. Bats and bananas:Simpli-fied diet of the nectar-feeding bat Glossophaga soricina (Phyllos-tomidae:Glossophaginae) foraging in Costa Rican banana planta-tions. Global Ecology and Conservation, 24. DOI:10. 1016/j.gecco. 2020. e01254. Ancillotto L, Borrello M, Caracciolo F, Dartora F, Ruberto M, Rummo R, Scaramella C, Odore A, Garonna A P, Russo D. 2024. A bat a day keeps the pest away:bats provide valuable protection from pests in organic apple orchards. Journal for Nature Conservation, 78. DOI:10. 1016/j. jnc. 2024. 126558. Anderson D E, Cui J, Ye Q, Huang B, Tan Y, Jiang C, Zu W, Gong J, Liu W, Kim S Y. 2021. Orthogonal genome-wide screens of bat cells identify MTHFD1 as a target of broad antiviral therapy. Pro-ceedings of the National Academy of Sciences, 118 (39). DOI:10. 1073/pnas. 2104759118. Apitz-Castro R, Beguin S, Tablante A, Bartoli F, Holt J C, Hemker H C. 1995. Purification and partial characterization of draculin, the anticoagulant factor present in the saliva of vampire bats (Desmo-dus rotundus). Thrombosis and Haemostasis, 73 (1):94-100. Baqi A, Lim V C, Yazid H, Anwarali Khan F A, Lian C J, Nelson B R, Sathiya Seelan J S, Appalasamy S, Mokhtar S I, Kumaran J V. 2022. A review of durian plant-bat pollinator interactions. Jour-nal of Plant Interactions, 17 (1):105-126. Boyles J G, Cryan P M, McCracken G F, Kunz T H. 2011. Economic importance of bats in agriculture. Science, 332 (6025):41-42. Bumrungsri S, Sripaoraya E, Chongsiri T, Sridith K, Racey P A. 2009. The pollination ecology of durian (Durio zibethinus, Bom-bacaceae) in southern Thailand. Journal of Tropical Ecology, 25(1):85-92.Cassano C R, Silva R M, Mariano-Neto E, Schroth G, Faria D. 2016. Bat and bird exclusion but not shade cover influence arthropod abundance and cocoa leaf consumption in agroforestry landscape in northeast Brazil. Agriculture, Ecosystems & Environment, 232:247-253. Cleveland C J, Betke M, Federico P, Frank J D, Hallam T G, Horn J, Lopez J D, McCracken G F, Medellin R A, Moreno-Valdez A, Sansone C G, Westbrook J K, Kunz T H. 2006. Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Frontiers in Ecology and the Environment, 4(5):238-243. Costanza R, d'Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'neill R V, Paruelo J. 1997. The value of the world's ecosystem services and natural capital. Nature, 387(6630):253-260. Domingos-Melo A, Albuquerque-Lima S, Diniz U M, Lopes A V, Machado I C. 2023. Bat pollination in the Caatinga:a review of studies and peculiarities of the system in the new world's largest and most diverse seasonally dry tropical forest. Flora, 305. DOI:10. 1016/j. flora. 2023. 152332. Dumont E R. 1999. The effect of food hardness on feeding behaviour in frugivorous bats (Phyllostomidae):an experimental study.Journal of Zoology, 248 (2):219-229. Federico P, Hallam T G, McCracken G F, Purucker S T, Grant W E, Correa-Sandoval A N, Westbrook J K, Medellin R A, Cleveland C J, Sansone C G, Lopez J D, Betke M, Moreno-Valdez A, Kunz T H. 2008. Brazilian free-tailed bats as insect pest regulators in transgenic and conventional cotton crops. Ecological Applica-tions, 18 (4):826-837. Fernandez A Z, Tablante A, Beguiin S, Hemker H C, Apitz-Castro R. 1999. Draculin, the anticoagulant factor in vampire bat saliva, is a tight-binding, noncompetitive inhibitor of activated factor X.Biochimica et Biophysica Acta (BBA)-Protein Structure and Mo-lecular Enzymology, 1434 (1):135-142. Festa F, Ancillotto L, Santini L, Pacifici M, Rocha R, Toshkova N, Amorim F, Benítez-López A, Domer A, Hamidović D. 2023. Bat responses to climate change:a systematic review. Biological Re-views, 98 (1):19-33. Foley N M, Hughes G M, Huang Z, Clarke M, Jebb D, Whelan C V, Petit E J, Touzalin F, Farcy O, Jones G. 2018. Growing old, yet staying young:the role of telomeres in bats'exceptional longev-ity. Science Advances, 4 (2). DOI:10. 1126/sciadv. aao0926. Forli A, Yartsev M M. 2023. Hippocampal representation during col-lective spatial behaviour in bats. Nature, 621 (7980):796-803. Frick W F, Kingston T, Flanders J. 2020. A review of the major threats and challenges to global bat conservation. Annals of the New York Academy of Sciences, 1469 (1):5-25. Fu B, Wang S, Su C, Forsius M. 2013. Linking ecosystem processes and ecosystem services. Current Opinion in Environmental Sus-tainability, 5 (1):4-10. Gao H, Xiang Z, He J, Luo B, Wang W, Deng Y, Yang R, Zhou W, Zhou D, Jiang Y. 2023. Using expert knowledge to identify key threats and conservation strategies for wildlife:a case study with bats in China. Global Ecology and Conservation, 41. DOI:10. 1016/j. gecco. 2022. e02364. Ghanem S J, Voigt C C. 2012. Increasing awareness of ecosystem services provided by bats. Advances in the Study of Behavior, 44:279-302. Goldshtein A, Chen X, Amichai E, Boonman A, Harten L, Yinon O, Orchan Y, Nathan R, Toledo S, Couzin I D, Yovel Y. 2024. Acoustic cognitive map-based navigation in echolocating bats. Science, 386 (6652):561-567. Gonzalez-Gutierrez K, Castaño J H, Perez-Torres J, Mosquera-Mosquera H R. 2022. Structure and roles in pollina-tion networks between phyllostomid bats and flowers:a system-atic review for the Americas. Mammalian Biology, 102 (1):21-49. Gorbunova V, Seluanov A, Kennedy B K. 2020. The world goes bats:living longer and tolerating viruses. Cell Metabolism, 32 (1):31-43. Gras P, Tscharntke T, Maas B, Tjoa A, Hafsah A, Clough Y. 2016. How ants, birds and bats affect crop yield along shade gradients in tropical cacao agroforestry. Journal of Applied Ecology, 53 (3):953-963. Hedenström A, Johansson L C. 2015. Bat flight:aerodynamics, kine-matics and flight morphology. The Journal of Experimental Biol-ogy, 218 (5):653-663. Heim O, Lorenz L, Kramer-Schadt S, Jung K, Voigt C C, Eccard J A. 2017. Landscape and scale-dependent spatial niches of bats forag-ing above intensively used arable fields. Ecological Processes, 6:1-15. Hua R, Ma Y S, Yang L, Hao J J, Hua Q Y, Shi L Y, Yao X Q, Zhi H Y, Liu Z. 2024. Experimental evidence for cancer resistance in a bat species. Nature Communications, 15 (1). DOI:10. 1038/s41467-024-45767-1. Jones T K, Moss C F. 2021. Visual cues enhance obstacle avoidance in echolocating bats. Journal of Experimental Biology, 224 (9).DOI:10. 1242/jeb. 241968. Kamins A O, Restif O, Ntiamoa-Baidu Y, Suu-Ire R, Hayman D T, Cunningham A A, Wood J L, Rowcliffe J M. 2011. Uncovering the fruit bat bushmeat commodity chain and the true extent of fruit bat hunting in Ghana, West Africa. Biological Conservation, 144 (12):3000-3008. Karp D S, Daily G C. 2014. Cascading effects of insectivorous birds and bats in tropical coffee plantations. Ecology, 95 (4):1065-1074. Karp D S, Mendenhall C D, Sandi R F, Chaumont N, Ehrlich P R, Hadly E A, Daily G C. 2013. Forest bolsters bird abundance, pest control and coffee yield. Ecology Letters, 16 (11):1339-1347. Kolkert H, Smith R, Rader R, Reid N. 2021. Insectivorous bats pro-vide significant economic value to the Australian cotton industry.Ecosystem Services, 49. DOI:10. 1016/j. ecoser. 2021. 101280. Kunz T H, de Torrez E B, Bauer D, Lobova T, Fleming T H. 2011.Ecosystem services provided by bats. Year in Ecology and Con-servation Biology, 1223:1-38. Kurpiers L A, Schulte-Herbrüggen B, Ejotre I, Reeder D A M. 2016.Bushmeat and emerging infectious diseases:Lessons from Africa.Problematic Wildlife, 507-551. Lee H S, Chon S H, Kim M A, Park J E, Lim Y M, Kim E J, Son E K, Kim S J, So J H. 2019. Fermentation enhances the antioxidant and anti-inflammatory effects of Bat Faeces (Ye Ming Sha) via the ERK, p38 MAPK and NF-κB signaling pathways in RAW 264. 7 cells. Journal of Applied Biological Chemistry, 62 (1):57-66. Lee Y F, McCracken G F. 2005. Dietary variation of Brazilian free-tailed bats links to migratory populations of pest insects. Journal of Mammalogy, 86 (1):67-76. Letko M, Seifert S N, Olival K J, Plowright R K, Munster V J. 2020.Bat-borne virus diversity, spillover and emergence. Nature Re-views Microbiology, 18 (8):461-471. Liang X, Xie H, Li Y, Huang Z, Li S, Wu Y, Yu W. 2023. First record of the flat-skulled woolly bat Kerivouladepressa and the Indochi-nese woolly bat K. dongduongana (Chiroptera, Vespertilionidae)in China. ZooKeys, 1149. DOI:10. 3897/zookeys. 1149. 85821. Linden V M G, Grass I, Joubert E, Tscharntke T, Weier S M, Taylor P J. 2019. Ecosystem services and disservices by birds, bats and monkeys change with macadamia landscape heterogeneity. Jour-nal of Applied Ecology, 56 (8):2069-2078.Liu Y, Geng Y, Huang Z, Feng J, Jiang T. 2024a. Pest suppression ser-vices and dietary niche differentiation of bats in Chinese small-holder farming systems:Implications for integrated pest manage-ment. Journal of Pest Science, 97 (3):1587-1603. Liu Y, Geng Y, Si M, Zhu D, Huang Z, Yin H, Zeng H, Feng J, Jiang T. 2024b. Trait responses, nonconsumptive effects, and the physi-ological basis of Helicoverpa armigera to bat predation risk.Communications Biology, 7 (1). DOI:10. 1038/s42003-024-07166-6. Liu Y, Si M, Huang Z, Feng J, Jiang T. 2023. Bats are sentinels for in-vasive pest surveillance based on DNA metabarcoding. Ecologi-cal Indicators, 152:1-7. Lopez-Hoffman L, Diffendorfer J, Wiederholt R, Bagstad K J, Thog-martin W E, McCracken G, Medellin R L, Russell A, Semmens D J. 2017. Operationalizing the telecoupling framework for migra-tory species using the spatial subsidies approach to examine eco-system services provided by Mexican free-tailed bats. Ecology and Society, 22 (4). DOI:10. 5751/ES-09589-220423. Lopez-Hoffman L, Wiederholt R, Sansone C, Bagstad K J, Cryan P, Diffendorfer J E, Goldstein J, Lasharr K, Loomis J, McCracken G, Medellin R A, Russell A, Semmens D. 2014. Market forces and technological substitutes cause fluctuations in the value of bat pest-control services for cotton. PLoS ONE, 9 (2). DOI:10. 1371/journal. pone. 0087912. Luo B, Xu R, Li Y, Zhou W, Wang W, Gao H, Wang Z, Deng Y, Liu Y, Feng J. 2021. Artificial light reduces foraging opportunities in wild least horseshoe bats. Environmental Pollution, 288:117765. Ma D, Mizurini D M, Assumpcao T C F, Li Y, Qi Y, Kotsyfakis M, Ri-beiro J M C, Monteiro R Q, Francischetti I M B. 2013. Desmo-laris, a novel factor XIa anticoagulant from the salivary gland of the vampire bat (Desmodus rotundus) inhibits inflammation and thrombosis in vivo. Blood, 122 (25):4094-4106. Maas B, Clough Y, Tscharntke T. 2013. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecology Letters, 16(12):1480-1487. Maas B, Karp D S, Bumrungsri S, Darras K, Gonthier D, Huang J C C, Lindell C A, Maine J J, Mestre L, Michel N L, Morrison E B, Per-fecto I, Philpott S M, Sekerciogiu C H, Silva R M, Taylor P J, Tscharntke T, Van Bael S A, Whelan C J, Williams-Guillen K. 2016. Bird and bat predation services in tropical forests and agro-forestry landscapes. Biological Reviews, 91 (4):1081-1101. Maine J J, Boyles J G. 2015. Bats initiate vital agroecological interac-tions in corn. Proceedings of the National Academy of Sciences of the United States of America, 112 (40):12438-12443. Marwa E M, Andrew T, Hatibu A A. 2021. Challenges facing effec-tive use of bat guano as organic fertilizer in crop production:A re-view. International Journal of Engineering and Applied Sciences, 8 (8):8-13. McCracken G F, Gillam E H, Westbrook J K, Lee Y F, Jensen M L, Balsley B B. 2008. Brazilian free-tailed bats (Tadarida brasilien-sis:Molossidae, Chiroptera) at high altitude:links to migratory in-sect populations. Integrative and Comparative Biology, 48 (1):107-118. McCracken G F, Westbrook J K, Brown V A, Eldridge M, Federico P, Kunz T H. 2012. Bats track and exploit changes in insect pest populations. PLoS ONE, 7 (8). DOI:10. 1371/journal. pone. 0043839. Mengist W, Soromessa T, Feyisa G L. 2020. A global view of regula-tory ecosystem services:existed knowledge, trends, and research gaps. Ecological Processes, 9:1-14. Mickleburgh S, Waylen K, Racey P. 2009. Bats as bushmeat:a global review. Oryx, 43 (2):217-234. Mildenstein T, Tanshi I, Racey P A. 2016. Exploitation of bats for bushmeat and medicine. In:Voige C C, Kingston T eds. Bats in the Anthropocene:Conservation of Bats in a Changing World.Springer International Publishing, 325-375. Millennium ecosystem assessment M. 2005. Ecosystems and Human Well-Being. Washington, DC:Island Press. Misra P K, Gautam N K, Elangovan V. 2019. Bat guano:a rich source of macro and microelements essential for plant growth. Annals of Plant and Soil Research, 21 (1):82-86. Murphy F, Ament J. 2022. Pluralistic valuation of codling moth regu-lation by brown long-eared bats in English apple orchards. Sus-tainability, 14 (19). DOI:10. 3390/su141911966. Muscarella R, Fleming T H. 2007. The role of frugivorous bats in tropical forest succession. Biological Reviews, 82 (4):573-590. Oliveira J M, Destro A L F, Freitas M B, Oliveira L L. 2020. How do pesticides affect bats?-A brief review of recent publications.Brazilian Journal of Biology, 81 (2):499-507. Park K J. 2015. Mitigating the impacts of agriculture on biodiversity:bats and their potential role as bioindicators. Mammalian Biol-ogy, 80 (3):191-204. Puig-Montserrat X, Torre I, Lopez-Baucells A, Guerrieri E, Monti M M, Rafols-Garcia R, Ferrer X, Gisbert D, Flaquer C. 2015. Pest control service provided by bats in Mediterranean rice paddies:linking agroecosystems structure to ecological functions. Mam-malian Biology, 80 (3):237-245. Raghuram H, Singaravelan N, Nathan P T, Rajan K, Marimuthu G. 2011. Foraging ecology of pteropodid bats:pollination and seed dispersal. In:Zupan J L, Mlakar S L eds. Bats:Biology, Behavior and Conservation. Nova Science Publishers, 177-188. Ramirez-Francel L A, Garcia-Herrera L V, Losada-Prado S, Reinoso-Florez G, Sanchez-Hernandez A, Estrada-Villegas S, Lim B K, Guevara G. 2022. Bats and their vital ecosystem ser-vices:a global review. Integrative Zoology, 17 (1):2-23. Rebelo H, Tarroso P, Jones G. 2010. Predicted impact of climate change on European bats in relation to their biogeographic pat-terns. Global Change Biology, 16 (2):561-576. Riccucci M. 2012. Bats as materia medica:an ethnomedical review and implications for conservation. Vespertilio, 16:249-270. Rodríguez-San Pedro A, Allendes J L, Beltrán C A, Chaperon P N, Saldarriaga-Córdoba M M, Silva A X, Grez A A. 2020. Quantify-ing ecological and economic value of pest control services pro-vided by bats in a vineyard landscape of central Chile. Agricul-ture Ecosystems & Environment, 302. DOI:10. 1016/j.agee. 2020. 107063. Roeleke M, Schlgel U E, Gallagher C, Pufelski J, Blohm T, Nathan R, Toledo S, Jeltsch F, Voigt C C. 2022. Insectivorous bats form mo-bile sensory networks to optimize prey localization:The case of the common noctule bat. Proceedings of the National Academy of Sciences of the United States of America, 119 (33). DOI:10. 1073/pnas. 2203663119. Rojas D, Vale A, Ferrero V, Navarro L. 2011. When did plants be-come important to leaf-nosed bats? Diversification of feeding hab-its in the family Phyllostomidae. Molecular Ecology, 20 (10):2217-2228. Sakoui S, Derdak R, Addoum B, Serrano-Delgado A, Soukri A, El Khalfi B. 2020. The life hidden inside caves:ecological and eco-nomic importance of bat guano. International Journal of Ecol-ogy, 2020 (1). DOI:10. 1155/2020/9872532. Saldaña-Vázquez R A, Castaño J H, Baldwin J, Pérez-Torres J. 2019.Does seed ingestion by bats enhance germination? A new meta -analysis 15 years later. Mammal Review, 49 (3):201-209. Schleuning W D. 2002. Vampire bat plasminogen activator DSPA-alpha-1 (desmoteplase):a thrombolytic drug optimized by natural selection. Pathophysiology of Haemostasis and Thrombo-sis, 31 (3-6):118-122. Sears K E, Behringer R R, Rasweiler J J, Niswander L A. 2006. De-velopment of bat flight:morphologic and molecular evolution of bat wing digits. Proceedings of the National Academy of Sciences of the United States of America, 103 (17):6581-6586. Siepielski A M, Wang J, Prince G. 2014. Nonconsumptive predatordriven mortality causes natural selection on prey. Evolution, 68(3):696-704. Sothearen T, Furey N M, Jurgens J A. 2014. Effect of bat guano on the growth of five economically important plant species. Journal of Tropical Agriculture, 52 (2):169-173. Stålhammar S, Pedersen E. 2017. Recreational cultural ecosystem ser-vices:How do people describe the value? Ecosystem Services, 26:1-9. Svensson G P, Skals N, Lofstedt C. 2003. Disruption of the odourmediated mating behaviour of Plodia interpunctella using highfrequency sound. Entomologia Experimentalis Et Applicata, 106(3):187-192. Taylor P J, Grass I, Alberts A J, Joubert E, Tscharntke T. 2018. Eco-nomic value of bat predation services-A review and new esti-mates from macadamia orchards. Ecosystem Services, 30:372-381. Tremlett C J, Moore M, Chapman M A, Zamora-Gutierrez V, Peh K S H. 2020. Pollination by bats enhances both quality and yield of a major cash crop in Mexico. Journal of Applied Ecology, 57 (3):450-459. Tuneu-Corral C, Puig-Montserrat X, Riba-Bertolin D, Russo D, Rebelo H, Cabeza M, Lopez-Baucells A. 2023. Pest suppression by bats and management strategies to favour it:a global review. Biologi-cal Reviews, 98 (5):1564-1582. Vorontsov D D, Lapshin D N. 2002. Frequency tuning of the auditory system of acoustically active noctuids (noctuidae, lepidoptera).Doklady Biological Sciences, 386:407-409. Wang F, Pei X, Wu G, Bai Y. 2024a. Analysis and design of bat-like flapping-wing Aircraft. Aerospace, 11 (4):325. Wang Q Y, Feng J, Wu H, Jiang T L. 2024b. Insectivorous bats provide more pest suppression services than disservices-a case study in China. Biological Control, 188. DOI:10. 1016/j. biocon-trol. 2023. 105435. Wang X Y, Han X S, Csorba Gábor, Wu Y, Chen H Q, Zhao X, Dong Z Y, Yu W H, Lu Z. 2024c. A new species of Tube-nosed Bat (Chi-roptera:Vespertilionidae:Murina) from Qinghai-Xizang Plateau, China. Journal of Mammalogy. DOI:10. 1093/jmammal/gyae104. Wanger T C, Darras K, Bumrungsri S, Tscharntke T, Klein A M. 2014. Bat pest control contributes to food security in Thailand. Biological Conservation, 171:220-223. Waters D A. 1996. The peripheral auditory characteristics of noctuid moths:Information encoding and endogenous noise. Journal of Experimental Biology, 199 (4):857-868. Wiederholt R, Bagstad K J, McCracken G F, Diffendorfer J E, Loomis J B, Semmens D J, Russell A L, Sansone C, La Sharr K, Cryan P. 2017. Improving spatio-temporal benefit transfers for pest control by generalist predators in cotton in the southwestern US. Interna-tional Journal of Biodiversity Science, Ecosystem Services & Management, 13 (1):27-39. Wiederholt R, López-Hoffman L, Svancara C, McCracken G, Thog-martin W, Diffendorfer J E, Mattsson B, Bagstad K, Cryan P, Rus-sell A, Semmens D, Medellín R A. 2015. Optimizing conserva-tion strategies for Mexican free-tailed bats:a population viability and ecosystem services approach. Biodiversity and Conservation, 24 (1):63-82. Wohlgemuth M J, Luo J, Moss C F. 2016. Three-dimensional auditory localization in the echolocating bat. Current Opinion in Neurobi-ology, 41:78-86. Yartsev M M, Ulanovsky N. 2013. Representation of threedimensional space in the hippocampus of flying bats. Science, 340 (6130):367-372. Yu W H, Csorba G, Wu Y. 2020. Tube-nosed variations-a new species of the genus (Chiroptera:Vespertilionidae) from China. Zoologi-cal Research, 41 (1):70-77. Yu Y, Guan Z. 2015. Learning from bat:aerodynamics of actively morphing wing. Theoretical and Applied Mechanics Letters, 5(1):13-15. Zalipah M N, Anuar M S S, Jones G. 2016. The potential significance of nectar-feeding bats as pollinators in mangrove habitats of Pen-insular Malaysia. Biotropica, 48 (4):425-428. Zhang W J, Liu Y Y, Wang Z Q, Lin T T, Feng J, Jiang T L. 2023. Ef-fects of predation risks of bats on the growth, development, repro-duction, and hormone levels of Spodoptera litura. Frontiers in Ecology and Evolution, 11. DOI:10. 3389/fevo. 2023. 1126253. Zhang X, Wang W, Yu X, Liu Y, Li W, Yang H, Cui Y, Tian X. 2022.Biological composition analysis of a natural medicine, Faeces Vespertilionis, with complex sources using DNA metabarcoding. Sci-entific Reports, 12 (1). DOI:10. 1038/s41598-021-04387-1. Zhu D, Liu Y, Gong L, Si M, Wang Q, Feng J, Jiang T. 2024. The consumption and diversity variation responses of agricultural pests and their dietary niche differentiation in insectivorous bats. Ani-mals, 14 (5). DOI:10. 3390/ani14050815. 刁海欣, 苏浩晖, 石子凡, 裴枭鑫, 黄秦, 于传庭, 李权, 余文华, 吴毅, 蒋学龙, 陈中正. 2024. 西藏地区两种蝙蝠新纪录:安氏长舌果蝠和艾氏管鼻蝠. 兽类学报, 44 (5):558-562. 付子英, 唐佳, 陈其才. 2022. 蝙蝠, 听觉和回声定位研究的模型动物. 生物化学与生物物理进展, 49 (5):883-896. 白蛟蛟. 2018. 福 文 化 中 的 蝙 蝠 纹 样 探 究. 明 日 风 尚, 2018(6):342. 刘莹莹. 2024. 蝙蝠在农业生态系统中的害虫抑制作用及价值研究. 长春:东北师范大学博士学位论文. 江廷磊, 赵华斌, 何彪, 张礼标, 罗金红, 刘颖, 孙克萍, 余文华, 吴毅, 冯江. 2020. 中国蝙蝠生物学研究进展及其保护对策. 兽类学报, 40 (6):539-559. 李灿, 周跃华. 2020. 夜明砂药材标准及炮制规范的现状及相关问题探讨. 中国新药杂志, 29 (16):1851-1855. 李典. 2006. 中国传统吉祥图典. 北京:京华出版社. 吴涛, 龚小燕, 黄太福, 彭乐, 张佑祥, 刘志霄. 2018. 湘西州洞栖性蝙蝠物种多样性的初步调查. 野生动物学报, 39 (4):7. 张建鑫. 2019. 中国蝙蝠主题图案研究. 南京:南京师范大学硕士学位论文. 陈又林, 李合胜. 2013. 民间传统建筑窗格装饰中的蝙蝠图案解析. 华东交通大学学报, 30 (6):5. 赵军. 2006. 动物在中西方文化中的不同内涵. 北京城市学院学报, (4):3. 耿江天, 王菲, 赵华斌. 2024. 城市化对中国蝙蝠影响的研究进展硕士学位论文. 生物多样性, 32 (8):19-31. 黄正澜懿. 2020. 榕江管鼻蝠分类地位有效性的探讨. 广州:广州大学硕士学位论文. 黄泽锋, 廖雅晴, 王晓云, 张惠光, 蔡斌, 雍凡, 崔鹏, 余文华, 吴毅. 2023. 福建省两种管鼻蝠新纪录. 兽类学报, 43 (4):472-478. |
[1] | 黄泽锋, 廖雅晴, 王晓云, 张惠光, 蔡斌, 雍凡, 崔鹏, 余文华, 吴毅. 福建省两种管鼻蝠新纪录[J]. 兽类学报, 2023, 43(4): 472-478. |
[2] | 李彦男, 梁晓玲, 谢慧娴, 邓汶圃, 何敏怡, 余文华, 吴毅. 大墓蝠在广东省分布的再发现[J]. 兽类学报, 2023, 43(1): 122-128. |
[3] | 王俊华, 黄继展, 植诗雅, 胡嘉敏, 陈凯豪, 梁捷, 何向阳, 张礼标. 澳门翼手目物种多样性补充调查及其保护现状[J]. 兽类学报, 2022, 42(1): 125-130. |
[4] | 谢慧娴, 李彦男, 梁晓玲, 张惠光, 詹丽英, 吴毅, 余文华. 环颈蝠(Thainycteris aureocollaris)在中国分布的再发现[J]. 兽类学报, 2021, 41(4): 476-482. |
[5] | 江廷磊 赵华斌 何彪 张礼标 罗金红 刘颖 孙克萍 余文华 吴毅 冯江. 中国蝙蝠生物学研究进展及其保护对策[J]. 兽类学报, 2020, 40(6): 539-559. |
[6] | 曾嘉鸣 赵华斌. 蝙蝠抗病毒天然免疫的研究进展[J]. 兽类学报, 2020, 40(6): 560-570. |
[7] | 吴秀 罗波 王维维 高会敏 邓迎春 王静 冯江. 降雨噪声对菲菊头蝠出飞行为的影响[J]. 兽类学报, 2020, 40(2): 129-134. |
[8] | 庞育兰 罗波 王漫 吴秀 冯江. 菲菊头蝠回声定位声波频率的性二态有利于性别识别[J]. 兽类学报, 2019, 39(2): 155-161. |
[9] | 陈宇轩 赵华斌. 吸血蝙蝠食性特化及其研究现状[J]. 兽类学报, 2019, 39(2): 202-208. |
[10] | 黄太福 龚小燕 吴涛 彭乐 张佑祥 张礼标 刘志霄. 梵净山管鼻蝠在湖南省的分布新纪录[J]. 兽类学报, 2018, 38(3): 315-317. |
[11] | 侯淋淋 江廷磊 林爱青 冯江. 大蹄蝠头骨形态地理变化[J]. 兽类学报, 2017, 37(3): 241-250. |
[12] | David J. Stanton. 香港大蹄蝠出飞时间及其季节变化[J]. 兽类学报, 2017, 37(3): 251-255. |
[13] | 谭梁静 孙云霄 刘奇 彭兴文 张琴 刘会 梁捷 彭真 何向阳 张礼标. 云南西双版纳蝙蝠咬合力及生态位分化[J]. 兽类学报, 2017, 37(2): 139-145. |
[14] | 韩宝银 汪凯 武进伟. 蝙蝠犁鼻器受体V1R基因的分子进化[J]. 兽类学报, 2017, 37(1): 97-103. |
[15] | 孙淙南 郭熊 黄晓宾 江廷磊 冯江. 环境噪声对蝙蝠回声定位叫声及飞行活动的影响[J]. 兽类学报, 2016, 36(4): 397-403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||