兽类学报 ›› 2025, Vol. 45 ›› Issue (3): 283-294.DOI: 10.16829/j.slxb.150940
收稿日期:
2024-04-17
接受日期:
2024-08-14
出版日期:
2025-05-31
发布日期:
2025-06-03
通讯作者:
魏登邦
作者简介:
蒲小燕 (1975- ),女,博士研究生,主要从事低氧适应及损伤相关机制研究. E-mail: puxiaoyan1975@163.com
基金资助:
Xiaoyan PU1(), Chongyang DAI1, Yaxuan WANG1, Dengbang WEI2(
)
Received:
2024-04-17
Accepted:
2024-08-14
Online:
2025-05-31
Published:
2025-06-03
Contact:
Dengbang WEI
摘要:
肺表面活性蛋白A (Surfactant protein A, SP‐A) 是最丰富的肺表面活性蛋白,由SFTPA基因编码合成,主要在哺乳动物的肺组织中合成,也在骨骼肌等组织中表达。SP‐A具有降低肺表面张力、增强肺气体交换、调节免疫、清除病原体和降低炎症反应的功能。本研究通过对不同海拔SD大鼠 (2 250 m和3 700 m) 和高原鼢鼠 (Eospalax baileyi) (2 700 m和3 700 m) 肝、肺、骨骼肌、小肠、结肠和脂肪组织转录组测序分析后;利用qRT‑PCR法比较分析SFTPA基因在两个物种骨骼肌和肺组织中的表达水平;利用Western Blotting法比较分析SP‐A在两个物种骨骼肌、肺组织和血清中的表达水平。转录组分析发现,随着海拔升高,大鼠骨骼肌中SFTPA基因表达显著上调,但在高原鼢鼠骨骼肌中其表达没有显著差异;qRT‑PCR结果显示,随着海拔升高,生境氧含量下降,SD大鼠骨骼肌组织中SFTPA表达升高,高原鼢鼠骨骼肌组织中SFTPA表达显著降低,且SD大鼠和高原鼢鼠肺组织中SFTPA表达均显著降低;Western Blotting结果显示,随着海拔升高,生境氧含量下降,在SD大鼠和高原鼢鼠骨骼肌、血清和肺组织中SP‐A的表达水平均显著升高。总之,高海拔低氧环境下,SD大鼠和高原鼢鼠肺组织中SFTPA基因转录表达显著降低,但两个物种肺组织中SP‐A含量不仅没有下降,反而显著升高,这可能是由骨骼肌合成并分泌的SP‐A经血液转运至肺组织的结果,也是SD大鼠习服低氧环境,高原鼢鼠适应低氧环境的重要机制。
中图分类号:
蒲小燕, 戴重阳, 王雅轩, 魏登邦. 低氧环境下高原鼢鼠及SD大鼠肺和骨骼肌中SP‑A的表达模式[J]. 兽类学报, 2025, 45(3): 283-294.
Xiaoyan PU, Chongyang DAI, Yaxuan WANG, Dengbang WEI. The expression patterns of surfactant protein A (SP‐A) in lung and skeletal muscle in SD rat and plateau zokor (Eospalax baileyi) under the hypoxia environments[J]. ACTA THERIOLOGICA SINICA, 2025, 45(3): 283-294.
样本 Sample | 原始读数 Raw reads | 清洁读数 Clean reads | 错误率 Error rate/% | 碱基质量值 Q20/% | 碱基质量值 Q30/% |
---|---|---|---|---|---|
RL_JR_1 | 60792716 | 60326478 | 0.025 1 | 98.10 | 94.15 |
RL_JR_2 | 58037480 | 56085200 | 0.025 3 | 97.96 | 93.89 |
RL_JR_3 | 63848522 | 61660090 | 0.025 9 | 97.75 | 93.39 |
RH_JR_1 | 50958280 | 49219200 | 0.025 8 | 97.80 | 93.45 |
RH_JR_2 | 55253402 | 52263220 | 0.026 2 | 97.61 | 93.06 |
RH_JR_3 | 47158104 | 44837466 | 0.026 1 | 97.65 | 93.10 |
ZL_JR_1 | 44498698 | 43993632 | 0.026 1 | 97.49 | 93.17 |
ZLJ_JR_2 | 46066694 | 45538394 | 0.023 3 | 97.59 | 93.36 |
ZLJ_JR_3 | 48235896 | 47710310 | 0.026 5 | 97.33 | 92.79 |
ZHJ_JR_1 | 41859668 | 41039026 | 0.027 0 | 97.13 | 92.43 |
ZHJ_JR_2 | 45660114 | 45068504 | 0.026 6 | 97.29 | 92.74 |
ZHJ_JR_3 | 45736038 | 45095202 | 0.026 4 | 97.39 | 92.95 |
表1 SD大鼠及高原鼢鼠骨骼肌组织转录本测序数据统计结果
Table 1 Sequencing data statistics and sequence alignment analysis of muscle tissues transcripts from SD rat and plateau zokor
样本 Sample | 原始读数 Raw reads | 清洁读数 Clean reads | 错误率 Error rate/% | 碱基质量值 Q20/% | 碱基质量值 Q30/% |
---|---|---|---|---|---|
RL_JR_1 | 60792716 | 60326478 | 0.025 1 | 98.10 | 94.15 |
RL_JR_2 | 58037480 | 56085200 | 0.025 3 | 97.96 | 93.89 |
RL_JR_3 | 63848522 | 61660090 | 0.025 9 | 97.75 | 93.39 |
RH_JR_1 | 50958280 | 49219200 | 0.025 8 | 97.80 | 93.45 |
RH_JR_2 | 55253402 | 52263220 | 0.026 2 | 97.61 | 93.06 |
RH_JR_3 | 47158104 | 44837466 | 0.026 1 | 97.65 | 93.10 |
ZL_JR_1 | 44498698 | 43993632 | 0.026 1 | 97.49 | 93.17 |
ZLJ_JR_2 | 46066694 | 45538394 | 0.023 3 | 97.59 | 93.36 |
ZLJ_JR_3 | 48235896 | 47710310 | 0.026 5 | 97.33 | 92.79 |
ZHJ_JR_1 | 41859668 | 41039026 | 0.027 0 | 97.13 | 92.43 |
ZHJ_JR_2 | 45660114 | 45068504 | 0.026 6 | 97.29 | 92.74 |
ZHJ_JR_3 | 45736038 | 45095202 | 0.026 4 | 97.39 | 92.95 |
图1 不同海拔条件下SD大鼠骨骼肌转录组分析结果. A:转录本PCA分析;B:差异基因火山图;C:GO富集分析;D:上调差异基因KEGG通路富集分析;E:下调差异基因KEGG通路富集分析;F:各样本SFTPA TPM值;G:SFTPA组间表达差异. RL、RH分别指低海拔SD大鼠、高海拔SD大鼠 (n = 3)
Fig. 1 Transcriptome analysis of skeletal muscle in SD rat at different altitudes. A: PCA analysis of transcripts; B: Differential gene volcano map; C: GO enrichment analysis; D: KEGG pathway enrichment analysis of up-regulated differential genes; E: KEGG pathway enrichment analysis of down-regulated differential genes; F: TPM values of SFTPA gene in each sample; G: SFTPA gene expression differences between the two groups. RL and RH refers to SD rats in the low-altitude group and SD rats in the high-altitude group (n = 3)
基因名称 Gene name | 表达差异倍数 Log2FC | P 值 P value | 显著性 Significant | 趋势 Regulate |
---|---|---|---|---|
Sftpc | 7.375 081 543 | 0.015 5 | Yes | 上调Up |
Rab1b | 7.138 197 744 | 0.021 2 | Yes | 上调Up |
SFTPA | 6.863 194 973 | 0.008 0 | Yes | 上调Up |
Pitx1 | 6.419 578 930 | < 0.001 | Yes | 上调Up |
Nectin4 | 6.174 529 850 | 0.024 7 | Yes | 上调Up |
Pnma1 | -6.151 937 528 | 0.016 0 | Yes | 下调Down |
Taf13 | 6.036 091 339 | 0.022 6 | Yes | 上调Up |
Chia | 6.025 407 012 | 0.042 7 | Yes | 上调Up |
Fetub | 5.789 343 533 | 0.044 0 | Yes | 上调Up |
Ttr | 5.716 509 656 | 0.041 8 | Yes | 上调Up |
表2 不同海拔SD大鼠骨骼肌组织基因的差异表达
Table 2 Differential expression of genes in skeletal muscle tissue of SD rats at different altitudes
基因名称 Gene name | 表达差异倍数 Log2FC | P 值 P value | 显著性 Significant | 趋势 Regulate |
---|---|---|---|---|
Sftpc | 7.375 081 543 | 0.015 5 | Yes | 上调Up |
Rab1b | 7.138 197 744 | 0.021 2 | Yes | 上调Up |
SFTPA | 6.863 194 973 | 0.008 0 | Yes | 上调Up |
Pitx1 | 6.419 578 930 | < 0.001 | Yes | 上调Up |
Nectin4 | 6.174 529 850 | 0.024 7 | Yes | 上调Up |
Pnma1 | -6.151 937 528 | 0.016 0 | Yes | 下调Down |
Taf13 | 6.036 091 339 | 0.022 6 | Yes | 上调Up |
Chia | 6.025 407 012 | 0.042 7 | Yes | 上调Up |
Fetub | 5.789 343 533 | 0.044 0 | Yes | 上调Up |
Ttr | 5.716 509 656 | 0.041 8 | Yes | 上调Up |
图2 不同海拔条件下高原鼢鼠骨骼肌转录组分析结果. A:转录本PCA分析;B:差异基因火山图;C:GO富集分析;D:上调差异基因KEGG通路富集分析;E:下调差异基因KEGG通路富集分析. ZL、ZH分别指低海拔高原鼢鼠、高海拔高原鼢鼠 (n = 3)
Fig. 2 Transcriptome analysis of skeletal muscle in plateau zokor at different altitudes. A: PCA analysis of transcripts; B: Differential gene volcano map; C: GO enrichment analysis; D: KEGG pathway enrichment analysis of up-regulated differential genes; E: KEGG pathway enrichment analysis of down-regulated differential genes. ZL and ZH refers to plateau zokor in the low-altitude group and plateau zokor in the high-altitude group (n = 3)
图3 SFTPA及SP-A蛋白在SD大鼠及高原鼢鼠骨骼肌组织中的表达水平. * P < 0.05, *** P < 0.001
Fig. 3 The expression levels of SFTPA and SP-A protein in skeletal muscle of SD rat and plateau zokor. * P < 0.05, *** P < 0.001
图5 SFTPA及SP-A蛋白在SD大鼠及高原鼢鼠肺组织中的表达水平. * P < 0.05, ** P < 0.01
Fig. 5 The expression levels of SFTPA and SP-A protein in lung of SD rat and plateau zokor. * P < 0.05, ** P < 0.01
Akiyama J, Hoffman A, Brown C, Allen L, Edmondson J, Poulain F, Hawgood S. 2002. Tissue distribution of surfactant proteins A and D in the mouse [J]. Journal of Histochemistry & Cytochemistry, 50 (7): 993-996. | |
An Z F, Wei L N, Xu B, Wang Z J, Gao C H, Li J M, Wei L, Qi D L, Shi P, Zhang T Z, Wei D B. 2022. A homotetrameric hemoglobin expressed in alveolar epithelial cells increases blood oxygenation in high‑altitude plateau pika (Ochotona curzoniae)[J]. Cell Reports, 41 (1). DOI: 10.1016/j.celrep.2022.111446 . | |
Bourbon J R, Chailley‑Heu B. 2001. Surfactant proteins in the digestive tract, mesentery, and other organs: evolutionary significance [J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 129 (1): 151-161. | |
Chen S F, Zhou Y Q, Chen Y R, Gu J. 2018. fastp: an ultra‑fast all‑in‑one FASTQ preprocessor [J]. Bioinformatics, 34 (17): i884-i890. | |
Chen X, Yue R C, Li X M, Ye W J, Gu W, Guo X J. 2021. Surfactant protein A modulates the activities of the JAK/STAT pathway in suppressing Th1 and Th17 polarization in murine OVA‑induced allergic asthma [J]. Laboratory Investigation, 101 (9): 1176-1185. | |
Creuwels L A, van Golde L M, Haagsman H P. 1997. The pulmonary surfactant system: biochemical and clinical aspects [J]. Lung, 175: 1-39. | |
Crouch E, Hartshorn K, Ofek I. 2000. Collectins and pulmonary innate immunity [J]. Immunological Reviews, 173: 52-65. | |
Dai C Y, Lin X, Qi Y L, Wang Y X, Lv Z K, Zhao F B, Deng Z C, Feng X K, Zhang T Z, Pu X Y. 2024. Vitamin D3 improved hypoxia‑induced lung injury by inhibiting the complement and coagulation cascade and autophagy pathway [J]. BMC Pulmonary Medicine, 24 (1). DOI: 10.1186/s12890-023-02784-y . | |
Dunaeva M, Blom J, Thurlings R, Pruijn G J M. 2018. Circulating serum miR‑223‑3p and miR‑16‑5p as possible biomarkers of early rheumatoid arthritis [J]. Clinical and Experimental Immunology, 193 (3): 376-385. | |
Eichstaedt C A, Benjamin N, Cao D, Palevičiūtė E, Grünig E. 2023. Genetics of high‑altitude pulmonary edema [J]. Heart Failure Clinics, 19 (1): 89-96. | |
Grotkjaer T, Winther O, Regenberg B, Nielsen J, Hansen L K. 2006. Robust multi‑scale clustering of large DNA microarray datasets with the consensus algorithm [J]. Bioinformatics, 22: 58-67. | |
Hackett P, Rennie D. 2002. High‑altitude pulmonary edema [J]. The Journal of the American Medical Association, 287 (17): 2275-2278. | |
Imray C, Wright A, Subudhi A, Roach R. 2010. Acute Mountain sickness: pathophysiology, prevention, and treatment [J]. Progress in Cardiovascular Diseases, 52 (6): 467-484. | |
Kim D, Langmead B, Salzberg S L. 2015. HISAT: a fast spliced aligner with low memory requirements [J]. Nature Methods, 12 (4): 357-360. | |
King S D, Chen S Y. 2020. Recent progress on surfactant protein A: cellular function in lung and kidney disease development [J]. American Journal of Physiology‑Cell Physiology, 319 (2): C316-C320. | |
Li B, Dewey C N. 2011. RSEM: accurate transcript quantification from RNA‑Seq data with or without a reference genome [J]. BMC Bioinformatics, 12: 323. | |
Li J M, An Z F, Wei L N, Xu B, Wang Z J, Gao C H, Wei L, Qi D L, Shi P, Zhang T Z, Wei D B. 2022. A new homotetramer hemoglobin in the pulmonary surfactant of plateau zokors (Myospalax baileyi) [J]. Frontiers in Genetics, 13. DOI: 10.3389/fgene.2022.824049 . | |
Li Y X, Xu B, An Z F, Wang Z J, Li J M, Gao C H, Wei L, Wei D B. 2021. Comparison of the composition and content of pulmonary surfactant among plateau zokors, plateau pikas and rats [J]. Acta Physiologica Sinica, 73 (1): 51-61 (in Chinese). | |
Lin Z W, Wang Y H, Zhu K M, Floros J. 2004. Differential allele expression of host defense genes, pulmonary surfactant protein‑A and osteopontin, in rat [J]. Molecular Immunology, 41 (12): 1155-1165. | |
Liu L D, Aron C Z, Grable C M, Robles A, Liu X L, Liu Y Y, Fatheree N Y, Rhoads J M, Alcorn J L. 2021. Surfactant protein A reduces TLR4 and inflammatory cytokine mRNA levels in neonatal mouse ileum [J]. Scientific Reports, 11 (1). DOI: 10.1038/s41598-021-82219-y . | |
Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA‑seq data with DESeq2 [J]. Genome Biology, 15 (112). DOI: 10.1186/s13059-014-0550-8 . | |
Nayak A, Dodagatta‑Marri E, Tsolaki A G, Kishore U. 2012. An insight into the diverse roles of surfactant proteins, SP‐A and SP‑D in Innate and Adaptive Immunity [J]. Frontiers in Immunology, 3. DOI: 10.3389/fimmu.2012.00131 . | |
Pastva A M, Wright J R, Williams K L. 2007. Immunomodulatory roles of surfactant proteins A and D: implications in lung disease [J]. Proceedings of the American Thoracic Society, 4 (3): 252-257. | |
Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA‑seq reads [J]. Nature Biotechnology, 33 (3): 290-295. | |
Pu X Y, Lin X, Duan X L, Wang J J, Shang J, Yun H X, Chen Z. 2020. Oxidative and endoplasmic reticulum stress responses to chronic high‑altitude exposure during the development of high‑altitude pulmonary hypertension [J]. High Altitude Medicine & Biology, 21 (4): 378-387. | |
Vieira F, Kung J W, Bhatti F. 2017. Structure, genetics and function of the pulmonary associated surfactant proteins A and D: The extra‑pulmonary role of these C type lectins [J]. Annals of Anatomy- Anatomischer Anzeiger, 211: 184-201. | |
Wang X J, Wei D B, Wei L, Qi X Z, Zhu S H, Rao X F.2008. Characteristics of pulmonary acinus structure in the plateau zokor Myospalax baileyi and plateau pika Ochotona curzniae [J]. Acta Zoologica Sinica, 54 (3): 531-539. (in Chinese) | |
Watson A, Madsen J, Clark H W. 2021. SP‐A and SP‑D: Dual functioning immune molecules with antiviral and immunomodulatory properties [J]. Frontiers in Immunology, 11. DOI: 10.3389/fimmu.2020.622598 . | |
Wei D B, Wei L, Zhang J M, Yu H Y. 2006. Blood‑gas properties of plateau zokor (Myospalax baileyi) [J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 145 (3): 372-375. | |
West J B. 2015. High‑altitude medicine [J]. Lancet Respiratory Medicine, 3 (1): 12-13. | |
Wright J R. 2005. Immunoregulatory functions of surfactant proteins [J]. Nature Reviews Immunology, 5 (1): 58-68. | |
Yamaguchi T, Higa K, Yagi‑YaguchiY, Ueda K, Noma H, Shibata S, Nagai T, Tomida D, Yasu‑Mimura R, Ibrahim O, Matoba R, Tsubota K, Hamrah P, Yamada J, Kanekura K, Shimazaki J. 2020. Pathological processes in aqueous humor due to iris atrophy predispose to early corneal graft failure in humans and mice [J]. Science Advances, 6 (20). DOI: 10.1126/sciadv.aaz5195eaaz5195 . | |
王晓君, 魏登邦, 魏莲, 齐新章, 朱世海, 饶鑫峰. 2008. 高原鼢鼠和高原鼠兔肺细叶的结构特征 [J]. 动物学报, 54 (3): 531-539. | |
李永晓, 徐波, 安志芳, 王志洁, 李吉梅, 高聪慧, 魏莲, 魏登邦. 2021. 高原鼢鼠、高原鼠兔和大鼠肺表面活性物质组成和含量的比较 [J]. 生理学报, 73 (1): 51-61. | |
曾缙祥, 王祖望, 师贤. 1984. 高山地区高原鼢鼠的代谢特点及若干生理指标的观察 [J]. 高原生物学集刊, 3: 163-171. |
[1] | 张佳钰, 安志芳, 王志洁, 陈晓琦, 魏登邦. 高海拔环境抑制高原鼢鼠和高原鼠兔的胆汁酸代谢[J]. 兽类学报, 2023, 43(5): 553-567. |
[2] | 覃雯, 杨传华, 蔡振媛. 高原鼢鼠和甘肃鼢鼠胆汁无机元素含量分析[J]. 兽类学报, 2023, 43(2): 229-234. |
[3] | 陶海萍, 李双, 贾功雪, 张璐瑶, 方有贵, 陈永伟, 杨其恩. 高原低氧胁迫对小鼠肝脏功能及基因表达的影响[J]. 兽类学报, 2022, 42(5): 590-600. |
[4] | 安康, 包明芳, 姚宝辉, 康宇坤, 谭宇尘, 王艳莉, 苏军虎. MTNR1a和MTNR1b基因在繁殖期与非繁殖期雄性高原鼢鼠HPG轴上的表达[J]. 兽类学报, 2022, 42(4): 410-419. |
[5] | 王艳莉, 姚宝辉, 张彩军, 谭宇尘, 康宇坤, 张德罡, 苏军虎. 高原鼢鼠发情周期阴道细胞变化特征及血清促性腺激素含量动态[J]. 兽类学报, 2021, 41(6): 731-740. |
[6] | 安晓宇 王玉军 李永昌 贾功雪 杨其恩. 高原鼢鼠精子发生的形态学特征和关键调控因子探究[J]. 兽类学报, 2020, 40(5): 435-445. |
[7] | 姬程鹏 周建伟 楚彬 周睿 王志鹏 王婷 田永亮 周延山 花立民. 祁连山东段高原鼢鼠暖季活动节律及其影响因素[J]. 兽类学报, 2018, 38(2): 201-210. |
[8] | 田永亮 周建伟 于应文 王巧玲 沈颜泽 花立民. 祁连山北麓高原鼢鼠栖息地选择要素[J]. 兽类学报, 2017, 37(4): 407-413. |
[9] | 姬程鹏 杨思维 周延山 楚彬 花立民. 祁连山东段高原鼢鼠洞道土壤微生物和土壤酶[J]. 兽类学报, 2017, 37(3): 284-292. |
[10] | 田永亮 牛钰杰 姬程鹏 周延山 楚彬 花立民. 祁连山东段高原鼢鼠采食洞道气体研究[J]. 兽类学报, 2017, 37(2): 152-161. |
[11] | 周延山 花立民 楚彬 刘丽 姬程鹏 田永亮. 高原鼢鼠繁殖特性与其栖息草地质量的关系[J]. 兽类学报, 2017, 37(1): 87-96. |
[12] | 许利娜 魏琳娜 汪洋 李筱 魏莲 魏登邦. 高原鼢鼠prestin基因的组织特异性表达与适应地下生活的关系[J]. 兽类学报, 2016, 36(2): 221-231. |
[13] | 崔雪峰 谢久祥 张守栋 林恭华 张同作 苏建平. 高原鼢鼠越冬食物选择与营养成分的关系[J]. 兽类学报, 2014, 34(4): 340-. |
[14] | 张湑泽 谢玲 郭新异 陈桂华 林恭华 都玉蓉 庞礴 郭松长. 高原鼢鼠神经型一氧化氮合酶基因编码区序列克隆与分析[J]. , 2014, 34(1): 17-27. |
[15] | 杨传华 都玉蓉 林恭华 苏建平 张同作. 甘肃鼢鼠和高原鼢鼠小肠组织学结构的比较[J]. , 2013, 33(2): 172-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||