ACTA THERIOLOGICA SINICA ›› 2023, Vol. 43 ›› Issue (3): 315-321.DOI: 10.16829/j.slxb.150740
• ORIGINAL PAPERS • Previous Articles Next Articles
Qiang LIU1, Haijun WANG2, Yue ZHAO1, Shiyu CHEN1, Guangshun JIANG1()
Received:
2022-10-19
Accepted:
2023-01-04
Online:
2023-05-31
Published:
2023-05-18
Contact:
Guangshun JIANG
通讯作者:
姜广顺
作者简介:
刘强 (1996- ),男,硕士,主要从事野生动物保护遗传学相关研究.基金资助:
CLC Number:
Qiang LIU, Haijun WANG, Yue ZHAO, Shiyu CHEN, Guangshun JIANG. The three-dimensional reconstruction and parameter measurement of the skull of Amur leopard (Panthera pardus orientalis) in China[J]. ACTA THERIOLOGICA SINICA, 2023, 43(3): 315-321.
刘强, 王海军, 赵越, 陈世玉, 姜广顺. 中国东北豹头骨三维重建及测量参数[J]. 兽类学报, 2023, 43(3): 315-321.
Fig. 1 Working interface diagram of 3D reconstruction of the skull of the Amur leopard by 3D Slicer. A: 3D view window; B: Cross section; C: Coronal plane; D: Sagittal plane
Fig. 2 The cranial measurements of Amur leopard used in this study, figure from Khorozyan et al.(2006) and 3D measurement result. A: Measurements for Amur leopard, dorsal view; B: Measurements for Amur leopard, ventral view; C: 3D measurement of the skull model, dorsal view; D: 3D measurement of the skull model, ventral view. Numbers correspond to the measurement sites in table 1, the measurements 6, 16, 17, 25 and 26 are not displayed
Fig. 3 Three-dimensional surface reconstruction CT images of the Amur leopard. A: dorsal view; B: ventral view; C: lateral view; D: caudal view. 1: Infraorbitale; 2: Zygomatic process; 3: Frontal process; 4: Frontal; 5: Encephalocoele; 6: Sagittal suture; 7:Foramen ovale; 8: Zygomatic; 9: Bulla ossae; 10: Occipital condyles; 11: Mastoid; 12: Forman magum; 13: Nasal; 14: Canines; 15: Molar; 16: Mandibular; 17: Frontal; 18: Encephalocoele; 19: Sagittal suture; 20: Zygomatic; 21: Bulla ossae; 22: Forman magum; 23: Lambdoid suture; 24: Occipital; 25: Occipital condyles
测量部位 Measurements of the skull | 测量值 Measurements (mm) |
---|---|
1颅全长 Greatest length (GL) | 192.00 |
2颅基底长 Skull basilar length (SBL) | 177.10 |
3基长 Basal length (BL) | 162.40 |
4上颊齿列冠长Length of upper tooth row C-P4(LUT) | 64.35 |
5 P4齿冠基长 Length of P4 (LP4) | 24.66 |
6枕颅高 Basion height (BH) | 64.64 |
7颅底轴长 Basicranial axis (BA) | 71.66 |
8枕大孔宽 Greatest breadth of the foramen magnum (GBFM) | 38.86 |
9颧宽 Zygomatic breadth (ZB) | 121.00 |
10最大眶间距 Greatest breath of the skull (GBS) | 62.58 |
11最小眶间宽 Least inter-orbital breadth (LIB) | 33.76 |
12上腭宽 Greatest palatal breadth (GPB) | 73.80 |
13犬齿外宽 Breadth at the canine alveoli (BCA) | 48.05 |
14最小眶后宽 Minimal breadth of the postorbital constriction (BPC) | 40.92 |
15眶下孔距 Breadth between infraorbital foramina (BIF) | 53.58 |
16眼窝高 Greatest inner height of the orbit (GHO) | 40.90 |
17眼窝长 Greatest inner length of the orbit (GLO) | 46.03 |
18鼻骨中缝长 Nasal suture length (NSL) | 44.06 |
19眶上孔颅长 Upper neurocranium length (UNL) | 79.23 |
20鼻颅长 Midian frontal length (MFL) | 128.10 |
21后颅与基底间长度 Length between opisthocranion and basion (LOB) | 30.82 |
22听泡长度 Length of bulla ossae (LBO) | 29.79 |
23听泡宽度 Width of bulla ossae (WBO) | 13.73 |
24听泡间宽 Breadth between bulla ossae (BBO) | 24.14 |
25脑颅最大宽 Greatest breath of the braincase (GBB) | 71.75 |
26乳突间距 Greatest mastoid breadth (GMB) | 79.07 |
Table 1 Measurements of the Amur leopard skull
测量部位 Measurements of the skull | 测量值 Measurements (mm) |
---|---|
1颅全长 Greatest length (GL) | 192.00 |
2颅基底长 Skull basilar length (SBL) | 177.10 |
3基长 Basal length (BL) | 162.40 |
4上颊齿列冠长Length of upper tooth row C-P4(LUT) | 64.35 |
5 P4齿冠基长 Length of P4 (LP4) | 24.66 |
6枕颅高 Basion height (BH) | 64.64 |
7颅底轴长 Basicranial axis (BA) | 71.66 |
8枕大孔宽 Greatest breadth of the foramen magnum (GBFM) | 38.86 |
9颧宽 Zygomatic breadth (ZB) | 121.00 |
10最大眶间距 Greatest breath of the skull (GBS) | 62.58 |
11最小眶间宽 Least inter-orbital breadth (LIB) | 33.76 |
12上腭宽 Greatest palatal breadth (GPB) | 73.80 |
13犬齿外宽 Breadth at the canine alveoli (BCA) | 48.05 |
14最小眶后宽 Minimal breadth of the postorbital constriction (BPC) | 40.92 |
15眶下孔距 Breadth between infraorbital foramina (BIF) | 53.58 |
16眼窝高 Greatest inner height of the orbit (GHO) | 40.90 |
17眼窝长 Greatest inner length of the orbit (GLO) | 46.03 |
18鼻骨中缝长 Nasal suture length (NSL) | 44.06 |
19眶上孔颅长 Upper neurocranium length (UNL) | 79.23 |
20鼻颅长 Midian frontal length (MFL) | 128.10 |
21后颅与基底间长度 Length between opisthocranion and basion (LOB) | 30.82 |
22听泡长度 Length of bulla ossae (LBO) | 29.79 |
23听泡宽度 Width of bulla ossae (WBO) | 13.73 |
24听泡间宽 Breadth between bulla ossae (BBO) | 24.14 |
25脑颅最大宽 Greatest breath of the braincase (GBB) | 71.75 |
26乳突间距 Greatest mastoid breadth (GMB) | 79.07 |
Arencibia A, Matos J, Encinoso M, Gil F, Artiles A, Martinez‑Gomariz F, Vazquez J M. 2019. Computed tomography and magnetic resonance imaging study of a normal tarsal joint in a Bengal tiger (Panthera tigris). BMC Veterinary Research, 15 (1): 1-14. | |
Bai X C. 2015. Geographic variation in the skull of the Siberian Weasel (Mustela sibirica manchurica) among different ecotypes. Master thesis. Harbin: Northeast Forestry University. (in Chinese) | |
Farhadinia M S, Kaboli M, Karami M, Farahmand H. 2014. Patterns of sexual dimorphism in the Persian leopard (Panthera pardus saxicolor) and implications for sex differentiation. Zoology in the Middle East, 60 (3): 195-207. | |
Fedorov A, Beichel R, Kalpathy‑Cramer J, Finet J, Fillion‑Robin J C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller J V, Pieper S, Kikinis R. 2012. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic Resonance Imaging, 30 (9): 1323-1341. | |
He P, Zhou Y J, Zhang R, Jing L B H, Ding D F, Wang J L. 2022. Three‑dimensional reconstruction and precision evaluation of the skull of Saiga antelope (Saiga tatarica). Chinese Journal of Zoology, 57 (2): 289-299. (in Chinese) | |
Hui J M, He L T, Wang M H. 2019. A comparison between cranial measurements using three‑dimensional laser scanning technology and manual measurements. Acta Anthropologica Sinica, 38 (2): 254-264. (in Chinese) | |
Khorozyan I G, Baryshnikov G F, Abramov A V. 2006. Taxonomic status of the leopard, Panthera pardus (Carnivora, Felidae) in the Caucasus and adjacent areas. Russian Journal of Theriology, 5 (1): 41-52. | |
Khorozyan I. 2014. Morphological variation and sexual dimorphism of the common leopard (Panthera pardus) in the Middle East and their implications for species taxonomy and conservation. Mammalian Biology, 79 (6): 398-405. | |
Kim S I, Oshida T, Lee H, Min M S, Kimura J. 2015. Evolutionary and biogeographical implications of variation in skull morphology of raccoon dogs (Nyctereutes procyonoides, Mammalia: Carnivora). Biological Journal of the Linnean Society, 116 (4): 856-872. | |
Kitchener A C, Breitenmoser‑Würsten C, Eizirik E, Gentry A, Werdelin L, Wilting A, Yamaguchi N, Abramov A V, Christiansen P, Driscoll C. 2017. A revised taxonomy of the Felidae: The final report of the Cat Classification Task Force of the IUCN Cat Specialist Group. Cat News. | |
Li L, Yin Y L, Zhou C F. 2019. A dataset of µCT scan of the skull of indotestudo elongata (Reptilia: Testudines). China Scientific Data, 6 (1): 237-244. (in Chinese) | |
Qi J Z, Shi Q H, Wang G M, Li Z L, Sun Q, Hua Y J, Jiang G S. 2015. Spatial distribution drivers of Amur leopard density in northeast China. Biological Conservation, 191: 258-265. | |
Si Y C, Yang J M, Wan F. 2021. Application of digital virtual technology in human anatomy teaching. Chinese Journal of Anatomy, 44 (4): 358-359. (in Chinese) | |
Stein A, Athreya V, Gerngross P, Balme G, Henschel P, Karanth U, Ghoddousi A. 2016. Panthera pardus. The IUCN Red List of Threatened Species 2016. T15954A50659089. IUCN, Gland.[Google Scholar]. | |
Stull K E, Tise M L, Ali Z, Fowler D R. 2014. Accuracy and reliability of measurements obtained from computed tomography 3D volume rendered images. Forensic Science International, 238: 133-140. | |
Xia L, Yang Q S, Feng Z J, Quan G Q, Ma Y. 2005. A guide to the measurement of mammal skull Ⅱ: Perissodactyla, Artiodactyla and Carnivor. Chinese Journal of Zoology, 40 (6): 67-73. (in Chinese) | |
Yin Y L, Zhou M, Lu H. 2021. A dataset of the skull μCT scanning of Keichousaurus hui (Reptilia: Sauropterygia) from the middle triassic of Guizhou Province, China. China Scientific Data, 6 (4): 131-137. (in Chinese) | |
Zhang X, Zhang Y M, Wu X J. 2020. The influence of quality parameter selection on 3D virtual reconstruction model precision based on dry skull. Acta Anthropologica Sinica, 39 (2): 270-281. (in Chinese) | |
Zhou Y W, Li Y T. 2022. Preliminary analysis of the three leopards’ skulls based on geometric morphology. Journal of Changshu Institute of Technology (Natural Science), 36 (5): 105-110. (in Chinese) | |
白晓晨. 2015. 黄鼬东北亚种 (Mustela sibirica manchurica) 不同生态型头骨形态特征的比较. 哈尔滨: 东北林业大学硕士学位论文. | |
宁晖, 白霖, 金箫笛, 罗继龙, 白志坤. 2022. 基于3D Slicer实现牛头塑化标本CT数据的可视化研究. 上海畜牧兽医通讯, (2): 28-32. | |
司银楚, 杨俊明, 万凤. 2021. 数字化虚拟增强现实技术在人体解剖学教学中的应用. 解剖学杂志, 44 (4): 358-359. | |
芦金树. 1993. 豹头骨及其易混淆品鉴别初探. 中草药, 24 (10): 546-547. | |
李烂, 殷亚磊, 周长付. 2021. 缅甸陆龟 (爬行纲: 龟鳖目) 头骨高精度CT扫描数据集. 中国科学数据: 中英文网络版, 6 (1): 237-244. | |
何鹏, 周应杰, 张瑞, 景丽百合, 张燕, 丁东方, 王建林. 2022. 赛加羚羊头骨的三维重建研究及其精确度评价. 动物学杂志, 57 (2): 289-299. | |
张玄, 张亚盟, 吴秀杰. 2020. 3D虚拟复原精度的差异对头骨测量数值的影响: 以Mimics软牛为例. 人类学学报, 39 (2): 270-281. | |
陈吉炎, 丁天仁. 1990. 豹骨与伪品大灵猫骨及狗骨的鉴定. 中国中药杂志, 15 (11): 12-14, 61-62. | |
陈吉炎. 1989. 成年与未成年豹骨形态鉴定研究. 中药材, 12 (12):21-26. | |
林幸华, 林杰, 汤勤荘. 1986. 豹骨与假豹骨 (原猫骨) 的鉴定. 中药材, (6): 23-25. | |
周用武, 李怡婷. 2022. 基于几何形态学对三种豹头骨的初步分析. 常熟理工学院学报, 36 (5): 105-110. | |
夏霖, 杨奇森, 冯祚建, 全国强, 马勇. 2005. 兽类头骨测量标准Ⅱ: 奇蹄目, 偶蹄目, 食肉目. 动物学杂志, 40 (6): 67-73. | |
徐小峰, 张新定. 2021. 3D slicer在高血压脑出血中的应用研究进展. 中国实验诊断学, 25 (4): 611-614. | |
殷亚磊, 周敏, 鲁昊. 2021. 中国贵州省中三叠世胡氏贵州龙 (爬行纲: 鳍龙超目) 头骨μCT扫描数据集. 中国科学数据: 中英文网络版, 6 (4): 131-137. | |
董为, 侯新文, 房迎三, 刘金毅, 朱奇志. 2006. 南京汤山早更新世猎豹头骨CT扫描数据的三维重建. 自然科学进展, 16 (9): 1146-1152. | |
惠家明, 贺乐天, 王明辉. 2019. 基于三维激光扫描的颅骨测量与手工测量的比较. 人类学学报, 38 (2): 254-264. |
[1] | HUANG Xiaolong, LI Haibo, ZHANG Xu, CHENG Shaochuan, YAN Yuying, YANG Wei, MENG Bingshun, WANG Cheng, YANG Jie, RAN Jingcheng. Difference of gut microbial structure between Rhinopithecus brelichi and Macaca thibetana in Fanjingshan Nature Reserve [J]. ACTA THERIOLOGICA SINICA, 2024, 44(2): 183-194. |
[2] | GUO Xiaoyi, WANG Wei, GU Jiayin, JIANG Guangshun. Research advances on spatial memory on animal movement [J]. ACTA THERIOLOGICA SINICA, 2024, 44(2): 224-236. |
[3] | GUO Tingyan, MA Haigang, HAN Pu, WANG Zidi, ZHU Changyue, CHU Yuanmengran, ZHANG Lixiang, LI Ruxue, QI Jiaru, LI Jiahua, FAN Pengfei. Spectral characteristics and sex differences in the song of Skywalker hoolock gibbon (Hoolock tianxing) [J]. ACTA THERIOLOGICA SINICA, 2024, 44(1): 14-25. |
[4] | HAN Mengya, TIAN Jundong, ZHOU Yanyan, WANG Yuwei, LUO Tongtong, LU Jiqi. Sexual interference in Taihangshan macaque (Macaca mulatta tcheliensis), Jiyuan, north China [J]. ACTA THERIOLOGICA SINICA, 2024, 44(1): 65-76. |
[5] | LIN Jinhuang, YAO Hui, WU Feng, XIANG Zuofu. The roles of color signals in the sexual selection of non-human primates [J]. ACTA THERIOLOGICA SINICA, 2024, 44(1): 103-117. |
[6] | SI Huangkai, JIN Zuxiang, ZHANG Kechu, ZHOU Fei, YAO Yongfang, XIAO Hongtao, LI Bajin, Pucuowangjia, XU Huailiang. Seasonal differences in habitat selection of rhesus macaques (Macaca mulatta) in the Western Sichuan Plateau region [J]. ACTA THERIOLOGICA SINICA, 2023, 43(6): 676-688. |
[7] | WANG Fei, ZHAO Huabin. Population genomic analysis revealed the genetic basis of adaptations to urbanization in the lesser short-nosed fruit bat (Cynopterus brachyotis) [J]. ACTA THERIOLOGICA SINICA, 2023, 43(6): 644-651. |
[8] | ZHANG Yuxing, WU Hong, YU Li. Advances in reproductive isolation mechanisms during animal speciation [J]. ACTA THERIOLOGICA SINICA, 2023, 43(6): 627-643. |
[9] | ZHONG Junjie, NIU Bing, CHEN Qin, CHEN Xiang, WANG Yan. Application of deep learning in wildlife conservation [J]. ACTA THERIOLOGICA SINICA, 2023, 43(6): 734-744. |
[10] | XIE Dongxu, ZHANG Rui, Suonanji, LIU Kejiang, WANG Tingwei, WANG Wenhui. Prokaryotic expression system construction, antibody preparation and tissues distribution of bactrian camel TLR1 [J]. ACTA THERIOLOGICA SINICA, 2023, 43(6): 745-752. |
[11] | LI Yaoyu, CHEN Xinyang, ZHAO Shanshan, SONG Xiao, GUO Rui, XU Aichun. Activity rhythm and home range of released sika deer (Cervus nippon kopschi) [J]. ACTA THERIOLOGICA SINICA, 2023, 43(5): 501-512. |
[12] | LI Genhui, QIN Zhongyi, LU Lixiong, GAO Wenjun, LUO Wenfu, LI Han, LI Yuwu, YIN Cunquan, XU Ping, YIN Guanghua, LI Fabao, NIU Xiaowei, JIANG Xuelong. Population size and distribution of western black crested gibbon (Nomascus concolor) in Ailao Mountain, Chuxiong Prefecture, Yunnan Province [J]. ACTA THERIOLOGICA SINICA, 2023, 43(5): 513-522. |
[13] | CHEN Xiaonan, TIAN Jia, LIU Mingzhang, SHEN Yunyi, YU Jianping, LIU Feng, SHEN Xiaoli, LI Sheng. Estimating the population size of wild boar (Sus scrofa) in Kaihua County, Zhejiang Province using camera-trapping data [J]. ACTA THERIOLOGICA SINICA, 2023, 43(5): 523-532. |
[14] | ZHANG Xiaona, JIA Gongxue, WU Shixin, WAN Ruidong, WANG Yujun, YANG Qien. Dissecting potential mechanisms of lactate-dependent Sertoli cell proliferation and gene expression [J]. ACTA THERIOLOGICA SINICA, 2023, 43(5): 568-579. |
[15] | PING Xiaoge, ZHU Jiang, WEI Fuwen. From Egypt to Kunming-Montreal—The shift of the Post-2020 Global Biodiversity Framework [J]. ACTA THERIOLOGICA SINICA, 2023, 43(4): 357-363. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||