ACTA THERIOLOGICA SINICA ›› 2022, Vol. 42 ›› Issue (5): 590-600.DOI: 10.16829/j.slxb.150697
• ORIGINAL PAPERS • Previous Articles Next Articles
Haiping TAO1,2, Shuang LI1,2, Gongxue JIA1,4, Luyao ZHANG3, Yougui FANG5, Yongwei CHEN6, Qien YANG1,4()
Received:
2022-06-01
Accepted:
2022-08-17
Online:
2022-09-30
Published:
2022-09-21
Contact:
Qien YANG
陶海萍1,2, 李双1,2, 贾功雪1,4, 张璐瑶3, 方有贵5, 陈永伟6, 杨其恩1,4()
通讯作者:
杨其恩
作者简介:
陶海萍 (1995- ),女,硕士研究生,主要从事哺乳动物发育生物学研究.
基金资助:
CLC Number:
Haiping TAO, Shuang LI, Gongxue JIA, Luyao ZHANG, Yougui FANG, Yongwei CHEN, Qien YANG. Effects of hypoxia stress on liver function and gene expression in mice[J]. ACTA THERIOLOGICA SINICA, 2022, 42(5): 590-600.
陶海萍, 李双, 贾功雪, 张璐瑶, 方有贵, 陈永伟, 杨其恩. 高原低氧胁迫对小鼠肝脏功能及基因表达的影响[J]. 兽类学报, 2022, 42(5): 590-600.
Fig.1 Effects of plateau hypoxic environment on body weight and organ proportion of mice. Right heart index (A), body weight at 18 weeks (B), lung specific gravity (C) and liver specific gravity (D). n = 9. *P < 0.05, **P < 0.01
Fig.2 Effects of plateau hypoxic environment on liver tissue morphology of mice. Representative images of HE staining of normoxic and hypoxic livers from generation 0 to generation 5. Scale bars represent 15 μm.Red blood cell infiltration (yellow arrow), intralobular lipid vacuoles (green triangle)
Fig.3 Effects of plateau hypoxic environment on biochemical indexes of mice. Alanine aminotransferase (ALT) (A), aspartate aminotransferase (AST) (B), albumin (C), globulin (D), total bilirubin (E), total cholesterol (F). n = 3. Bars with different letters were significantly different (P < 0.05)
Fig.4 Effects of plateau hypoxic environment on blood sugar and insulin levels of mice. GTT blood glucose concentration (A), GTT serum insulin level (B), ITT blood glucose concentration (C). n = 3.Bars with different letters were significantly different (P < 0.05)
Fig.5 The differentially expressed gene analysis of mice liver in Hypoxic group and Normoxic group. Numbers of differentially expressed gene (A ? C) and Heatmap (D ? E) of Hypoxic generation 0 vs. Normoxic generation 0, Hypoxic generation 1 vs. Normoxic generation 0 and Hypoxic generation 1 vs. Hypoxic generation 0
Fig.6 The differentially expressed gene analysis of mice liver in Hypoxic group and Normoxic group. The Venn diagram of differentially expressed gene (A) and KEGG pathway analysis diagram (B ? D) of Hypoxic generation 0 vs.Normoxic generation 0, Hypoxic generation 1 vs.Normoxic generation 0 and Hypoxic generation 1 vs.Hypoxic generation 0
Fig. 7 Effects of exposure to high altitude hypoxia on next generation liver. GO analysis of differentially expressed gene between Hypoxic generation 0 and Hypoxic generation 1 (A, B), mRNA FPKM expression level of genes related to MAPK signaling pathway (C). Bars with different letters were significantly different (P < 0.05)
Bogdanova A, Petrushanko I Y, Hernansanz‑Agustín P, Martínez‑Ruiz A. 2016.‘Oxygen sensing’by Na, K-ATPase: these miraculous thiols. Frontiers in Physiology, 7: 314. | |
Cargnello M, Roux P P. 2011. Activation and function of the mapks and their substrates, the mapk‑activated protein kinases. Microbiology and Molecular Biology Reviews, 75 (1): 50-83. | |
Chen H J, Edwards R, Tucci S, Bu P, Milsom J, Lee S, Edelmann W, Gümüs Z H, Shen X, Lipkin S. 2012. Chemokine 25-induced signaling suppresses colon cancer invasion and metastasis. The Journal of Clinical Investigation, 122 (9): 3184-3196. | |
Chen M X, Shen H, Zhu L L, Yang H F, Ye P, Liu P F, Gu Y, Chen S L. 2019. Berberine attenuates hypoxia-induced pulmonary arterial hypertension via bone morphogenetic protein and transforming growth factor-β signaling. Journal of Cellular Physiology, 234 (10): 17482-17493. | |
Corless J K, Middleton H M. 1983. Normal liver function. A basis for understanding hepatic disease. Archives of Internal Medicine, 143 (12): 2291-2294. | |
Cursio R, Miele C, Filippa N, Van Obberghen E, Gugenheim J. 2008. Liver HIF‑1 alpha induction precedes apoptosis following normothermic ischemia-reperfusion in rats. Transplantation Proceedings, 40 (6): 2042-2045. | |
Henne M. 2019. And three’s a party: lysosomes, lipid droplets, and the ER in lipid trafficking and cell homeostasis. Current Opinion in Cell Biology, 59: 40-49. | |
Hou Y P, Yang H A, Cui Z S, Tai X H, Chu Y L, Guo X. 2017. Tauroursodeoxycholic acid attenuates endoplasmic reticulum stress and protects the liver from chronic intermittent hypoxia induced injury. Experimental and Therapeutic Medicine, 14 (3): 2461-2468. | |
Huang Y, Li X H, Wang Y R, Wang H, Huang C, Li J. 2014. Endoplasmic reticulum stress‑induced hepatic stellate cell apoptosis through calcium‑mediated JNK/P38 MAPK and Calpain/Caspase-12 pathways. Molecular and Cellular Biochemistry, 394 (1-2): 1-12. | |
Huang Y, Wang D D, Wang X, Zhang Y J, Liu T, Chen Y T, Tang Y H, Wang T, Hu D, Huang C X. 2016. Abrogation of CC chemokine receptor 9 ameliorates ventricular remodeling in mice after myocardial infarction. Scientific Reports, 6: 32660. | |
Hernández‑Bustabad A, Morales‑Arraez D, González‑Paredes F J, Abrante B, Diaz‑Flores F, Abreu‑Gonzalez P, de la Barreda R, Quintero E, Hernández‑Guerra M. 2022. Chronic intermittent hypoxia promotes early intrahepatic endothelial impairment in rats with non‑alcoholic fatty liver disease. American Journal of Physiology. Gastrointestinal and Liver Physiology.DOI: 10.1152/ajpgi.00300.2021 . | |
Jin S, Chen Z, Lunan Y, Zeng Y, Wen T, Li B, Zhao J, Wang W, Xu M, Yang J. 2009. Can liver transplantation achieve similar effects at high altitudes compared with plains: case report. Transplantion Proceedings, 41 (5): 2003-2005. | |
Ke Q, Costa M. 2006. Hypoxia-inducible factor-1 (HIF‑1). Molecular Pharmacology, 70 (5): 1469-1480. | |
Kang H H, Kim I K, Lee H I, Joo H, Lim J U, Lee J, Lee S H, Moon H S. 2017. Chronic intermittent hypoxia induces liver fibrosis in mice with diet-induced obesity via TLR4/MyD88/MAPK/NF-kB signaling pathways. Biochemical and Biophysical Research Communications, 490 (2): 349-355. | |
Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly‑Maitre B. 2018. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. Journal of Hepatology, 69 (4): 927-947. | |
Li W B, Jia Z P, Xie H, Zhang J H, WangY L, Hao Y, Wang R.2014. Effects of acute exposure to high altitude on hepatic function and CYP 1A2 and CYP 3A4 activities in rats. Journal of Southern Medical University, 34: 1203-1206. | |
Liu F Y, Hu L, Li Y X, Liu S M, Tang Y P, Qi S G, Yang L, Wu T Y. 2015. Effect of altitude chronic hypoxia on liver enzymes and its correlation with ACE/ACE2 in yak and migrated cattle. Chinese Journal of Applied Physiology, 31 (3): 272. | |
Lukas J, Pospech J, Oppermann C, et al. 2019. Role of endoplasmic reticulum stress and protein misfolding in disorders of the liver and pancreas. Advances in Medical Sciences, 64 (2): 315-323. | |
Li S, Yang Q E. 2022. Hypobaric hypoxia exposure alters transcriptome in mouse testis and impairs spermatogenesis in offspring. Gene, 823: 146390. | |
Madrigal‑Santillán E, Madrigal‑Bujaidar E, Álvarez‑González I, Sumaya‑Martínez M T, Gutiérrez‑Salinas J, Bautista M, Morales‑González Á, García‑Luna Y, González‑Rubio M, Aguilar‑Faisal J L, Morales‑González J A. 2014. Review of natural products with hepatoprotective effects. World Journal of Gastroenterology, 20 (40): 14787-14804. | |
Mylonis I, Chachami G, Paraskeva E, Simos G. 2008. Atypical CRM1-dependent nuclear export signal mediates regulation of hypoxia-inducible factor-1alpha by MAPK. The Journal of Biological Chemistry, 283 (41): 27620-27627. | |
Nath B, Szabo G. 2012. Hypoxia and hypoxia inducible factors: diverse roles in liver diseases. Hepatology, 55 (2): 622-633. | |
Piret J P, Mottet D, Raes M, Michiels C. 2002. CoCl2, a chemical inducer of hypoxia-inducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2. Annals of the New York Academy of Sciences, 973 (1): 443-447. | |
Patel J C, Khurana P, Sharma Y K, Kumar B, Ragumani S. 2018. Chronic lifestyle diseases display seasonal sensitive comorbid trend in human population evidence from Google Trends. PLoS ONE, 13 (12): e0207359. | |
Reed W A, Manning R T, Hopkins L T.1964. Effects of hypoxia and hyperthermia on hepatic tissue of the dog. American Journal of Physiology, 206 (6): 1304. | |
Rius B, Duran‑Güell M, Flores‑Costa R, López‑Vicario C, Lopategi A, Alcaraz‑Quiles J, Casulleras M, Lozano J J, Titos E, Clària J. 2017. The specialized proresolving lipid mediator maresin 1 protects hepatocytes from lipotoxic and hypoxia-induced endoplasmic reticulum stress. The Federation of American Societies for Experimental Biology, 31 (12): 5384-5398. | |
Shingu K, Eger E I, Johnson B H. 1982. Hypoxia per se can produce hepatic damage without death in rats. Anesthesia and Analgesia, 61 (10): 820-823. | |
Song M J, Malhi H. 2019.The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease. Pharmacology & Therapeutics, 203: 107401. | |
Tian Y M, Liu Y, Wang S, Dong Y, Su T, Ma H J, Zhang Y. 2016. Anti-diabetes effect of chronic intermittent hypobaric hypoxia through improving liver insulin resistance in diabetic rats. Life Sciences, 150: 1-7. | |
Troeger J S, Schwabe R F. 2011. Hypoxia and hypoxia-inducible factor 1α: potential links between angiogenesis and fibrogenesis in hepatic stellate cells. Liver International: Official Journal of the International Association for the Study of the Liver, 31 (2): 143-145. | |
Tao H P, Jia G X, Zhang X N, Wang Y J, Li B Y, Yang Q E. 2022. Paternal hypoxia exposure impairs fertilization process and preimplantation embryo development. Zygote, 30 (1): 48-56. | |
Vicari A P, Figueroa D J, Hedrick J A, Foster J S, Singh K P, Menon S, Copeland N G, Gilbert D J, Jenkins N A, Bacon K B, Zlotnik A. 1997. TECK: a novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development. Immunity, 7 (2): 291-301. | |
Wang Y Q, Huang Y M, Guan F, Xiao Y, Deng J, Chen H Y, Chen X L, Li J R, Huang H J, Shi C W. 2013. Hypoxia-inducible factor-1alpha and MAPK co‑regulate activation of hepatic stellate cells upon hypoxia stimulation. PLoS ONE, 8 (9): e74051. | |
Watt M J, Miotto P M, De Nardo W, Montgomery M K. 2019. The liver as an endocrine organ‑linking NAFLD and insulin resistance. Endocrine Reviews, 40 (5): 1367-1393. | |
Xiong Y L, Wang Y M, Xiong Y L, Gao W, Teng L H. 2020. Salidroside alleviated hypoxia-induced liver injury by inhibiting endoplasmic reticulum stress‑mediated apoptosis via IRE1α/JNK pathway. Biochemical and Biophysical Research Communications, 529 (2): 335-340. | |
Yuen V W, Wong C C. 2020. Hypoxia-inducible factors and innate immunity in liver cancer. The Journal of Clinical Investigation, 130 (10): 5052-5062. | |
Zaballos A, Gutiérrez J, Varona R, Ardavín C, Márquez G. 1999. Cutting edge: identification of the orphan chemokine receptor GPR- 9-6 asCCR9, the receptor for the chemokine TECK. Journal of immunology (Baltimore, Md.: 1950), 162 (10): 5671-5675. | |
冯恩志, 戴胜归, 杨生岳. 2014. 低氧性肺动脉高压研究进展. 中华肺部疾病杂志, 7 (3): 84-87. | |
杜继曾, 张家兴. 2004. 低氧下生长发育抑制与认知功能促进的调节机制.珠海: 中国生理学会第五届比较生理学学术会议, 16-17. | |
杜继曾, 李庆芬. 1982. 模拟高原低氧对高原鼠兔和大鼠器官与血液若干指标的影响. 兽类学报, 2 (1): 35-42. | |
李永慧, 李永芳, 杨梅. 2016. 唐古特青兰对高原低氧大鼠肝损伤的保护作用. 高原医学杂志, 26 (2): 6-9. | |
荣黎, 曾维政, 吴晓玲. 2009. 高原缺氧与肝脏损伤. 世界华人消化杂志, 8: 189-195. | |
程守科, 于军一, 司本辉, 肖庆林, 梁子钧. 2001. 高原低氧环境下红细胞增多和血液粘度间关系的研究. 中国应用生理学杂志, 17 (3): 231-235. | |
廖卫公, 高钰琪, 吴艺, 蔡明春, 范有明. 2006. 低氧对大鼠附睾功能的影响. 生殖医学杂志, 15 (4): 252-256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||