ACTA THERIOLOGICA SINICA ›› 2022, Vol. 42 ›› Issue (6): 687-697.DOI: 10.16829/j.slxb.150692
• ORIGINAL PAPERS • Previous Articles Next Articles
Xingen YANG1,2, Yanlong WANG3, Bo ZOU1, Wenying CHANG1, Yu HOU1, Youyou ZHAO4, Tinglin WANG1(), Jianxu ZHANG5,6(
)
Received:
2022-05-23
Accepted:
2022-08-29
Online:
2022-11-30
Published:
2022-12-02
Contact:
Tinglin WANG,Jianxu ZHANG
杨新根1,2, 王艳龙3, 邹波1, 常文英1, 侯玉1, 赵悠悠4, 王庭林1(), 张健旭5,6(
)
通讯作者:
王庭林,张健旭
作者简介:
杨新根 (1974- ),男,副研究员,主要从事啮齿动物研究.
基金资助:
CLC Number:
Xingen YANG, Yanlong WANG, Bo ZOU, Wenying CHANG, Yu HOU, Youyou ZHAO, Tinglin WANG, Jianxu ZHANG. Vkorc1 polymorphism of two rodent species in different habitats[J]. ACTA THERIOLOGICA SINICA, 2022, 42(6): 687-697.
杨新根, 王艳龙, 邹波, 常文英, 侯玉, 赵悠悠, 王庭林, 张健旭. 不同栖息环境的两种啮齿动物Vkorc1基因多态性[J]. 兽类学报, 2022, 42(6): 687-697.
样本采集地 Sampling sites | 采样生境 Sampling habitats | 地理位置 Geographic coordinates | 海拔 Elevation (m) |
---|---|---|---|
运城市永济市 Yongji City, Yuncheng City (YOJ) | A | 110.43°E, 34.86°N | 392 |
晋城市陵川县 Lingchuan County, Jincheng City (LIC) | A,B | 113.27°E, 35.74°N | 1 080 |
临汾市洪洞县 Hongtong County, Linfen City (HOT) | C | 111.59°E, 36.25°N | 450 |
临汾市隰县 Xi County, Linfen City (XIX) | A,D | 110.85°E, 36.50°N | 1 020 |
临汾市永和县 Yonghe County, Linfen City (YOH) | D | 110.63°E, 36.76°N | 890 |
长治市沁县 Qin County, Changzhi City (QNX) | A,B | 112.69°E, 36.74°N | 1 140 |
晋中市左权县 Zuoquan County, Jinzhong City (ZOQ) | A,C | 113.31°E, 37.05°N | 1 080 |
晋中市祁县 Qi County, Jinzhong City (QIX) | A | 112.31°E, 37.35°N | 770 |
吕梁市中阳县 Zhongyang County, Lvliang City (ZHY) | B | 111.17°E, 37.36°N | 1 450 |
吕梁市离石区 Lishi District, Lvliang City (LIS) | A,B | 111.98°E, 37.52°N | 1 230 |
太原市小店区 Xiaodian District, Taiyuan City (XID) | C | 113.27°E, 37.80°N | 780 |
太原市娄烦县 Loufan County, Taiyuan City (LOF) | A,C | 111.86°E, 38.05°N | 1 320 |
太原市阳曲县 Yangqu County, Taiyuan City (YAQ) | B | 112.67°E, 38.29°N | 800 |
阳泉市盂县 Yu County, Yangquan City (YUX) | C,E | 113.35°E, 37.71°N | 1 250 |
忻州市静乐县 Jingle County, Xinzhou City (JNL) | B | 111.95°E, 38.39°N | 1 260 |
忻州市五台县 Wutai County, Xinzhou City (WUT) | C,E | 113.20°E, 38.64°N | 1 060 |
朔州市朔城区 Shuocheng District, Shuozhou City (SOC) | C | 112.30°E, 39.11°N | 1 140 |
大同市浑源县 Hunyuan County, Datong City (HNY) | C,E | 113.96°E, 39.85°N | 1 550 |
Table 1 The collecting details of sample sites
样本采集地 Sampling sites | 采样生境 Sampling habitats | 地理位置 Geographic coordinates | 海拔 Elevation (m) |
---|---|---|---|
运城市永济市 Yongji City, Yuncheng City (YOJ) | A | 110.43°E, 34.86°N | 392 |
晋城市陵川县 Lingchuan County, Jincheng City (LIC) | A,B | 113.27°E, 35.74°N | 1 080 |
临汾市洪洞县 Hongtong County, Linfen City (HOT) | C | 111.59°E, 36.25°N | 450 |
临汾市隰县 Xi County, Linfen City (XIX) | A,D | 110.85°E, 36.50°N | 1 020 |
临汾市永和县 Yonghe County, Linfen City (YOH) | D | 110.63°E, 36.76°N | 890 |
长治市沁县 Qin County, Changzhi City (QNX) | A,B | 112.69°E, 36.74°N | 1 140 |
晋中市左权县 Zuoquan County, Jinzhong City (ZOQ) | A,C | 113.31°E, 37.05°N | 1 080 |
晋中市祁县 Qi County, Jinzhong City (QIX) | A | 112.31°E, 37.35°N | 770 |
吕梁市中阳县 Zhongyang County, Lvliang City (ZHY) | B | 111.17°E, 37.36°N | 1 450 |
吕梁市离石区 Lishi District, Lvliang City (LIS) | A,B | 111.98°E, 37.52°N | 1 230 |
太原市小店区 Xiaodian District, Taiyuan City (XID) | C | 113.27°E, 37.80°N | 780 |
太原市娄烦县 Loufan County, Taiyuan City (LOF) | A,C | 111.86°E, 38.05°N | 1 320 |
太原市阳曲县 Yangqu County, Taiyuan City (YAQ) | B | 112.67°E, 38.29°N | 800 |
阳泉市盂县 Yu County, Yangquan City (YUX) | C,E | 113.35°E, 37.71°N | 1 250 |
忻州市静乐县 Jingle County, Xinzhou City (JNL) | B | 111.95°E, 38.39°N | 1 260 |
忻州市五台县 Wutai County, Xinzhou City (WUT) | C,E | 113.20°E, 38.64°N | 1 060 |
朔州市朔城区 Shuocheng District, Shuozhou City (SOC) | C | 112.30°E, 39.11°N | 1 140 |
大同市浑源县 Hunyuan County, Datong City (HNY) | C,E | 113.96°E, 39.85°N | 1 550 |
Fig. 1 The sampling sites and proportions of samples (Shanxi Province). A: Cricetulus longicaudatus; B: Ruttus tanezumi. Abbreviations are used for collection sites, see table 1 for collection sites. ‘×’ represent the sites that R. tanezumi was not captured; pie charts represent the proportions of samples, red for C. longicaudatus, blue for R. tanezumi, and white for other species
样本 Samples | 引物名称 Primer names | 引物序列 (5′‒3′) Primer sequences (5′‒3′) | PCR产物大小 Size of PCR products (bp) | 目标外显子 Target exons |
---|---|---|---|---|
长尾仓鼠 Cricetulus longicaudatus | C.l.-Vk1/F/e1-2 | AGAATGGCAGCCGAGGCGGGTCAACCTTC | 约1 300 | 1,2 |
C.l.-Vk1/R/e1-2 | CTTCCTGAACTAACTAGGATGCTGGTGTC | |||
C.l.-Vk1/F/e3 | GAATATAGACTTTAGCAGGAGTACTTACT | 约500 | 3 | |
C.l.-Vk1/R/e3 | GTGTGGTTATGGAGGGGGACTGGAATGAAG | |||
黄胸鼠 Ruttus tanezumi | R.t.-Vk1/F/e1-2 | GTTTACCAGCCCAGCATTCCTAGCTGTCA | 约 1 400 | 1,2 |
R.t.-Vk1/R/e1-2 | TTTGAGGGCCCTTCAAGCCTCTGGCTACC | |||
R.t.-Vk1/F/e3 | ACTCTGGGTCCCAAGAATTATTGAACAG | 约 400 | 3 | |
R.t.-Vk1/R/e3 | GGCAAAGCAAGTCATGTCAGCCTGGCAT |
Table 2 Specific primer sequences for the coding regions of Vkorc1 of Cricetulus longicaudatus and Ruttus tanezumi
样本 Samples | 引物名称 Primer names | 引物序列 (5′‒3′) Primer sequences (5′‒3′) | PCR产物大小 Size of PCR products (bp) | 目标外显子 Target exons |
---|---|---|---|---|
长尾仓鼠 Cricetulus longicaudatus | C.l.-Vk1/F/e1-2 | AGAATGGCAGCCGAGGCGGGTCAACCTTC | 约1 300 | 1,2 |
C.l.-Vk1/R/e1-2 | CTTCCTGAACTAACTAGGATGCTGGTGTC | |||
C.l.-Vk1/F/e3 | GAATATAGACTTTAGCAGGAGTACTTACT | 约500 | 3 | |
C.l.-Vk1/R/e3 | GTGTGGTTATGGAGGGGGACTGGAATGAAG | |||
黄胸鼠 Ruttus tanezumi | R.t.-Vk1/F/e1-2 | GTTTACCAGCCCAGCATTCCTAGCTGTCA | 约 1 400 | 1,2 |
R.t.-Vk1/R/e1-2 | TTTGAGGGCCCTTCAAGCCTCTGGCTACC | |||
R.t.-Vk1/F/e3 | ACTCTGGGTCCCAAGAATTATTGAACAG | 约 400 | 3 | |
R.t.-Vk1/R/e3 | GGCAAAGCAAGTCATGTCAGCCTGGCAT |
样本采集地 Sampling sites | 采样生境 Sampling habitats | 布夹 (笼) 数 Number of clips (cages) | 捕获数 Number of captures | 捕获率 Capture rate (%) | 啮齿动物占比 Proportions of rodents (%) | ||
---|---|---|---|---|---|---|---|
黄胸鼠 Ruttus tanezumi | 长尾仓鼠 Cricetulus longicaudatus | 其他啮齿动物 Others | |||||
YOJ | A | 200 | 10 | 5.00 | 50.00 | 50.00 | |
LIC | B | 450 | 41 | 9.11 | 12.20 | 87.80 | |
A | 180 | 13 | 7.22 | 76.92 | 23.08 | ||
HOT | C | 200 | 9 | 4.50 | 77.78 | 22.22 | |
XIX | D | 440 | 65 | 14.77 | 13.85 | 86.15 | |
A | 240 | 3 | 1.25 | 0.00 | 100 | ||
YOH | D | 400 | 38 | 9.50 | 21.05 | 78.95 | |
QNX | B | 450 | 43 | 9.56 | 25.58 | 74.42 | |
A | 210 | 10 | 4.76 | 90.00 | 10.00 | ||
ZOQ | B | 425 | 41 | 9.65 | 21.95 | 78.05 | |
C | 160 | 2 | 1.25 | 0.00 | 100 | ||
QIX | A | 210 | 8 | 3.81 | 75.00 | 25.00 | |
ZHY | B | 450 | 34 | 7.56 | 32.35 | 67.65 | |
LIS | B | 540 | 37 | 6.85 | 21.62 | 78.38 | |
A | 330 | 10 | 3.03 | 70.00 | 30.00 | ||
XID | C | 750 | 23 | 3.07 | 86.96 | 13.04 | |
LOF | B | 440 | 34 | 7.73 | 32.35 | 67.65 | |
C | 200 | 1 | 0.50 | 0.00 | 100 | ||
YAQ | B | 550 | 42 | 7.64 | 26.19 | 73.81 | |
YUX | E | 400 | 29 | 7.25 | 34.48 | 65.52 | |
C | 160 | 1 | 0.63 | 0.00 | 100 | ||
JNL | B | 440 | 42 | 9.55 | 19.04 | 80.96 | |
WUT | E | 400 | 36 | 9.00 | 30.56 | 69.44 | |
C | 460 | 9 | 1.96 | 66.67 | 33.33 | ||
SOC | C | 270 | 2 | 0.74 | 0.00 | 100 | |
HNY | E | 420 | 29 | 6.90 | 24.14 | 75.86 | |
C | 270 | 1 | 0.37 | 0.00 | 100 | ||
合计 Total | 9 665 | 613 |
Table 3 The sampling sites and the trapping details of rodents
样本采集地 Sampling sites | 采样生境 Sampling habitats | 布夹 (笼) 数 Number of clips (cages) | 捕获数 Number of captures | 捕获率 Capture rate (%) | 啮齿动物占比 Proportions of rodents (%) | ||
---|---|---|---|---|---|---|---|
黄胸鼠 Ruttus tanezumi | 长尾仓鼠 Cricetulus longicaudatus | 其他啮齿动物 Others | |||||
YOJ | A | 200 | 10 | 5.00 | 50.00 | 50.00 | |
LIC | B | 450 | 41 | 9.11 | 12.20 | 87.80 | |
A | 180 | 13 | 7.22 | 76.92 | 23.08 | ||
HOT | C | 200 | 9 | 4.50 | 77.78 | 22.22 | |
XIX | D | 440 | 65 | 14.77 | 13.85 | 86.15 | |
A | 240 | 3 | 1.25 | 0.00 | 100 | ||
YOH | D | 400 | 38 | 9.50 | 21.05 | 78.95 | |
QNX | B | 450 | 43 | 9.56 | 25.58 | 74.42 | |
A | 210 | 10 | 4.76 | 90.00 | 10.00 | ||
ZOQ | B | 425 | 41 | 9.65 | 21.95 | 78.05 | |
C | 160 | 2 | 1.25 | 0.00 | 100 | ||
QIX | A | 210 | 8 | 3.81 | 75.00 | 25.00 | |
ZHY | B | 450 | 34 | 7.56 | 32.35 | 67.65 | |
LIS | B | 540 | 37 | 6.85 | 21.62 | 78.38 | |
A | 330 | 10 | 3.03 | 70.00 | 30.00 | ||
XID | C | 750 | 23 | 3.07 | 86.96 | 13.04 | |
LOF | B | 440 | 34 | 7.73 | 32.35 | 67.65 | |
C | 200 | 1 | 0.50 | 0.00 | 100 | ||
YAQ | B | 550 | 42 | 7.64 | 26.19 | 73.81 | |
YUX | E | 400 | 29 | 7.25 | 34.48 | 65.52 | |
C | 160 | 1 | 0.63 | 0.00 | 100 | ||
JNL | B | 440 | 42 | 9.55 | 19.04 | 80.96 | |
WUT | E | 400 | 36 | 9.00 | 30.56 | 69.44 | |
C | 460 | 9 | 1.96 | 66.67 | 33.33 | ||
SOC | C | 270 | 2 | 0.74 | 0.00 | 100 | |
HNY | E | 420 | 29 | 6.90 | 24.14 | 75.86 | |
C | 270 | 1 | 0.37 | 0.00 | 100 | ||
合计 Total | 9 665 | 613 |
样本 Samples | 样本数 Number of samples | 变异类型 Mutation types | 核苷酸变异 Nucleotide mutations | 氨基酸变异 Amino acid mutations | 外显子 Exons | 携带变异位点个体数 Number of samples with mutations* | 变异率 Mutation rate (%) |
---|---|---|---|---|---|---|---|
长尾仓鼠 Cricetulus longicaudatus | 105 | 沉默突变 Silent mutation | G78A(C) | Ala26Ala | 1 | 16 (LIC1, QNX5, ZOQ1, ZHY2,LOF5, YUX1, JNL1) | 15.24 |
G135A | Val45Val | 1 | 9 (LIC3, XIX1, ZOQ1, ZHY1,YAQ1, HNY2) | 8.57 | |||
C159A | Arg53Arg | 1 | 11 (ZHY2, LIS2, YAQ4, YUX3) | 10.48 | |||
C222T | Ser74Ser | 2 | 10 (LIC5, XIX1, ZOQ1, ZHY1,HNY2) | 9.52 | |||
C342T | Phe114Phe | 3 | 30 (LIC1, QNX5, ZOQ3, ZHY1, LIS1, LOF4, YUX4, JNL5, WUT6) | 28.57 | |||
C438T | His146His | 3 | 71 (LIC3, XIX8, YOH5, QNX2, ZOQ5, ZHY8, LIS7, LOF4, YAQ8, YUX4, JNL5, WUT6, HNY6) | 67.62 | |||
错义突变 Missense mutation | C8T | Thr3Ile | 1 | 9 (LIC3, ZOQ1, ZHY1, LOF1,YAQ1, HNY2) | 8.57 | ||
G106A | Asp36Asn | 1 | 3 (LIC1, ZOQ1, LOF1) | 2.86 | |||
A203G | His68Arg | 2 | 10 (LIC5, XIX1, ZOQ1,ZHY1,HNY2) | 9.52 | |||
A203T | His68Leu | 2 | 2 (XIX2) | 1.90 | |||
G346A | Gly116Ser | 3 | 1 (YUX1) | 0.95 | |||
黄胸鼠 Ruttus tanezumi | 70 | 沉默突变 Silent mutation | A36G | Arg12Arg | 1 | 11 (HOT1, LIS5, XID3, WUT2) | 15.71 |
G123A | Ala41Ala | 1 | 4 (QIX2, XID2) | 5.71 | |||
T204C | His68His | 2 | 8 (HOT1, LIS5, XID1, WUT1) | 11.43 | |||
A246T | Ile82Ile | 2 | 3 (QIX1, XID2) | 4.29 | |||
A321C | Ile107Ile | 3 | 13 (HOT1, QIX2, LIS5, XID3, WUT2) | 18.57 | |||
T411C | Thr137Thr | 3 | 13 (HOT1, QIX2, LIS5,XID3,WUT2) | 18.57 | |||
错义突变 Missense mutation | A416G | Tyr139Cys | 3 | 8 (QIX1, XID7) | 11.43 |
Table 4 The mutation positions in coding regions of Vkorc1 gene of Cricetulus longicaudatus and Ruttus tanezumi
样本 Samples | 样本数 Number of samples | 变异类型 Mutation types | 核苷酸变异 Nucleotide mutations | 氨基酸变异 Amino acid mutations | 外显子 Exons | 携带变异位点个体数 Number of samples with mutations* | 变异率 Mutation rate (%) |
---|---|---|---|---|---|---|---|
长尾仓鼠 Cricetulus longicaudatus | 105 | 沉默突变 Silent mutation | G78A(C) | Ala26Ala | 1 | 16 (LIC1, QNX5, ZOQ1, ZHY2,LOF5, YUX1, JNL1) | 15.24 |
G135A | Val45Val | 1 | 9 (LIC3, XIX1, ZOQ1, ZHY1,YAQ1, HNY2) | 8.57 | |||
C159A | Arg53Arg | 1 | 11 (ZHY2, LIS2, YAQ4, YUX3) | 10.48 | |||
C222T | Ser74Ser | 2 | 10 (LIC5, XIX1, ZOQ1, ZHY1,HNY2) | 9.52 | |||
C342T | Phe114Phe | 3 | 30 (LIC1, QNX5, ZOQ3, ZHY1, LIS1, LOF4, YUX4, JNL5, WUT6) | 28.57 | |||
C438T | His146His | 3 | 71 (LIC3, XIX8, YOH5, QNX2, ZOQ5, ZHY8, LIS7, LOF4, YAQ8, YUX4, JNL5, WUT6, HNY6) | 67.62 | |||
错义突变 Missense mutation | C8T | Thr3Ile | 1 | 9 (LIC3, ZOQ1, ZHY1, LOF1,YAQ1, HNY2) | 8.57 | ||
G106A | Asp36Asn | 1 | 3 (LIC1, ZOQ1, LOF1) | 2.86 | |||
A203G | His68Arg | 2 | 10 (LIC5, XIX1, ZOQ1,ZHY1,HNY2) | 9.52 | |||
A203T | His68Leu | 2 | 2 (XIX2) | 1.90 | |||
G346A | Gly116Ser | 3 | 1 (YUX1) | 0.95 | |||
黄胸鼠 Ruttus tanezumi | 70 | 沉默突变 Silent mutation | A36G | Arg12Arg | 1 | 11 (HOT1, LIS5, XID3, WUT2) | 15.71 |
G123A | Ala41Ala | 1 | 4 (QIX2, XID2) | 5.71 | |||
T204C | His68His | 2 | 8 (HOT1, LIS5, XID1, WUT1) | 11.43 | |||
A246T | Ile82Ile | 2 | 3 (QIX1, XID2) | 4.29 | |||
A321C | Ile107Ile | 3 | 13 (HOT1, QIX2, LIS5, XID3, WUT2) | 18.57 | |||
T411C | Thr137Thr | 3 | 13 (HOT1, QIX2, LIS5,XID3,WUT2) | 18.57 | |||
错义突变 Missense mutation | A416G | Tyr139Cys | 3 | 8 (QIX1, XID7) | 11.43 |
Fig. 2 The mutation rate of Vkorc1 mutatants about Cricetulus longicaudatus in each sampling sites. NM: Non-mutatants; SM: Silent mutatants; MM: Missense mutatants
Fig. 3 The mutation rate of Vkorc1 mutatants about Ruttus tanezumi in each sampling sites. NM: Non-mutatants; SM: Silent mutatants; MM: Missense mutatants
Andru J, Cosson J F, Caliman J P, Benoit E. 2013. Coumatetralyl resistance of Rattus tanezumi infesting oil palm plantations in Indonesia. Ecotoxicology, 22 (2): 377-386. | |
Aplin K P, Suzuki H, Chinen A A, Chesser R T, Have J T, Donnellan S C, Austin J, Frost A, Gonzalez J P, Herbreteau V, Catzeflis F, Soubrier J, Fang Y P, Robins J, Matisoo‑Smith E, Bastos A D S, Maryanto I, Sinaga M H, Denys C, Bussche R A V D, Conroy C, Rowe K, Cooper A. 2011. Multiple geographic origins of commensalism and complex dispersal history of black rats. PLoS ONE, 6 (11): e26357. | |
Bastos A D, Nair D, Taylor P J, Brettschneider H, Kirsten F, Mostert E, von Maltitz E, Lamb J M, van Hooft P, Belmain S R, Contrafatto G, Downs S, Chimimba C T. 2011. Genetic monitoring detects an overlooked cryptic species and reveals the diversity and distribution of three invasive Rattus congeners in South Africa. BMC Genet, 12: 26. | |
Bentley E W. 1972. A review of anticoagulant rodenticides in current use. Bulletin of the World Health Organizatin, 47 (3): 275-280. | |
Blasdell K, Cosson J F, Chaval Y, Herbreteau V, Douangboupha B, Jittapalapong S, Lundqvis A, Hugot J, Morand S, Buchy P. 2011. Rodent-borne hantaviruses in Cambodia, Lao PDR, and Thailand. EcoHealth, 8 (4): 432-443. | |
Boyle C M. 1960. Case of apparent resistance of Rattus norvegicus berkenhout to anticoagulant poisons. Nature, 188 (4749): 517. | |
Buckle A P, Smith R H. 1994. Rodent Pests and Their Control. Canberra: Australian Centre for International Agricultural Research, 163-174. | |
Buckle A. 2013. Anticoagulant resistance in the United Kingdom and a new guideline for the management of resistant infestations of Norway rats (Rattus norvegicus Berk.). Pest Management Science, 69 (3): 334-341. | |
Christensen T K, Lassen P, Elmeros M. 2012. High exposure rates of anticoagulant rodenticides in predatory bird species in intensively managed landscapes in Denmark. Archives of Environmental Contamination and Toxicology, 63 (3): 437-444. | |
Conroy C J, Rowe K C, Rowe K M C, Kamath P L, Aplin K P, Hui L, James D K, Moritz C, Patton J L. 2013. Cryptic genetic diversity in Rattus of the San Francisco Bay region, California. Biological Invasions, 15 (4): 741-758. | |
Díaz J C, Song Y, Moore A, Borchert J N, Kohn M H. 2010. Analysis of Vkorc1 polymorphisms in Norway rats using the roof rat as outgroup. BMC Genet, 11: 43. | |
Dong T Y. 2001. Application of Anticoagulant Rodenticide. Beijing: China Science and Technology Press. (in Chinese) | |
Edgar R C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32 (5): 1792-1797. | |
Gao Z X, Shi D Z, Guo Y W, Wu X P, Ji L L, Yang J G, Yuan Z Q. 2008. Testing of resistance of the striped field mouse of Beijing to warfarin. Chinese Journal of Vector Biology and Control, 19 (2): 90-92. (in Chinese) | |
Geduhn A, Esther A, Schenke D, Gabriel D, Jacob J. 2016. Prey composition modulates exposure risk to anticoagulant rodenticides in a sentinel predator, the barn owl. Science of the Total Environment, 544: 150-157. | |
Goulois J, Lambert V, Legros L, Benoit E, Lattard V. 2017. Adaptative evolution of the Vkorc1 gene in Mus musculus domesticus is influenced by the selective pressure of anticoagulant rodenticides. Ecology and Evolution, 7 (8): 2767-2776. | |
Greaves J H. 1967. Resistance to anticoagulants in rodents. Pest Managment Science, 2 (6): 276-279. | |
Greaves J H, Rennison B D. 1973. Population aspect of warfarin resistance in the brown rat, Rattus norvregicus . Mammal Review, 3 (2): 27-29. | |
Gryseels S, Leirs H, Makundi R, Goüy de Bellocq J. 2015. Polymorphism in Vkorc1 gene of natal multimammate mice, Mastomys natalensis, in Tanzania Sophie. Journal of Heredity, 106 (5): 637-643. | |
Guo S, Li G, Liu J, Wang J, Lu L, Liu Q. 2019. Dispersal route of the Asian house rat (Rattus tanezumi) on mainland China: insights from microsatellite and mitochondrial DNA. BMC Genet, 20: 11. | |
Hebert P D N, Cywinska A, Ball S L, DeWaard J R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270 (1512): 313-321. | |
Helgeland L. 1977. The submicrosomal site for the conversion of prothrombin precursor to biologically active prothrombin in rat liver. Biochim Biophys Acta, 499 (2): 181-193. | |
Himsworth C G, Parsons K L, Jardine C, Patrick D M. 2013. Rats, cities, people, and pathogens: a systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers. Vector-Borne and Zoonotic Diseases, 13 (6): 349-359. | |
Huang B H, Feng Z Y, Yue L F, Yao D D, Gao Z X, Wang D W, Liu X H. 2011. Warfarin resistance test and polymorphism screening in the VKORC1 gene in Rattus flavipectus . Journal of Pest Science, 84: 87-92. | |
Huang L Q, Guo X G, Speakman J R, Dong W G. 2013. Analysis of gamasid mites (Acari: Mesostigmata) associated with the Asian house rat, Rattus tanezumi (Rodentia: Muridae) in Yunnan Province, Southwest China. Parasitol Research, 112 (5): 1967-1972. | |
Ishizuka M, Tanikawa T, Tanaka K D, Heewon M, Okajima F, Sakamoto K Q, Fujita S. 2008. Pesticide resistance in wild mammals-mechanisms of anticoagulant resistance in wild rodents. Journal of Toxicological Sciences, 33 (3): 283-291. | |
Jones C R, Lorica R P, Villegas J M, Ramal A F, Horgan F G, Singleton G R, Stuart A M. 2017. The stadium effect: rodent damage patterns in rice fields explored using giving-up densities. Integrative Zoology, 12 (6): 438-445. | |
Kohn M H, Pelz H J, Wayne R K. 2003. Locus-specific genetic differentiation at Rw among warfarin-resistant rat (Rattus norvegicus) populations. Genetics, 164 (3): 1055-1070. | |
Li T, Chang C Y, Jin D Y, Lin P J, Khvorova A, Stafford D W. 2004. Identification of the gene for vitamin K epoxide reductase. Nature, 427 (6974): 541-544. | |
Marquez A, Khalil R A, Fourel I, Ovarbury T, Pinot A, Rosine A, Thalmensi G, Jaffory G, Kodjo A, Benoit E, Lattard V. 2019. Resistance to anticoagulant rodenticides in Martinique could lead to inefcient rodent control in a context of endemic leptospirosis. Scientific Reports, 9 (1): 13491. | |
Pelz H J, Rost S, Hünerberg M, Fregin A, Heiberg A C, Baert K, MacNicoll A D, Prescott C V, Walker A S, Oldenburg J, Müller C R. 2005. The genetic basis of resistance to anticoagulants in rodents. Genetics, 170 (4): 1839-1847. | |
Petterino C, Paolo B. 2001. Toxicology of various anticoagulant rodenticides in animals. Veterinary and Human Toxicology, 43 (6): 353-360. | |
Plyusnina A, Ibrahim I N, Plyusnin A. 2009. A newly recognized hantavirus in the Asian house rat (Rattus tanezumi) in Indonesia. Journal of General Virology, 90 ( Pt 1): 205-209. | |
Poplavskaya N S, Bannikova A A, Fang Y, Sheftel B I, Ushakova M V, Surov A V, Lebedev V S. 2018. Is the center of origin of long‑tailed hamster Cricetulus longicaudatus Milne-Edwards 1867 (Rodentia, Cricetidae) Located in Tibet? Doklady Biological Sciences, 479 (1): 70-73. | |
Redfern R, Gill J E. 1980. Laboratory evaluation of bromadiolone as a rodenticide for use against warfarin-resistant and non-resistant rats and mice. Journal of Hygiene (Lond), 84 (2): 263-268. | |
Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hörtnagel K, Pelz H J, Lappegard K, Seifried E, Scharrer I, Tuddenham E G, Müller C R, Strom T M, Oldenburg J. 2004. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature, 427 (6974): 537-541. | |
Rost S, Fregin A, Hünerberg M, Bevans C G, Müller C R, Oldenburg J.2005.Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin. Thrombosis and Haemostasis, 94 (4): 780-786. | |
Rowe F P, Plant C J, Bradfield A. 1981. Trials of the anticoagulant rodenticides bromadiolone and difenacoum against the house mouse (Mus musculus L.). Journal of Hygiene (Lond), 87 (2): 171-177. | |
Sadler J E. 2004. Medicine: K is for koagulation. Nature, 427 (6974): 493-494. | |
Stöck M, Reisch F, Elmeros M, Gabriel D, Kloas W, Kreuz E, Lassen P, Esther A. 2019. The potential of VKORC1 polymorphisms in Mustelidae for evolving anticoagulant resistance through selection along the food chain. PLoS ONE, 14 (8): e0221706. | |
Thijssen H H, Soute B A, Vervoort L M, Claessens J G. 2004. Paracetamol (acetaminophen)-warfarin interaction: NAPQ1, the toxic metabolite of paracetamol, is an inhibitor of enzymes in the vitamin K cycle. Thrombosis and Haemostasis, 92 (4): 797-802. | |
Vein J, Grandemange A, Cosson J F, Benoit E, Berny P J. 2011. Are water vole resistant to anticoagulant rodenticides following field treatments? Ecotoxicology, 20 (6): 1432-1441. | |
Wang J, Feng Z, Yao D, Sui J, Zhong W, Li M, Dai J. 2008. Warfarin resistance in Rattus losea in Guangdong Province, China. Pesticide Biochemistry and Physiology, 91: 90-95. | |
Wang J Z, Yan L, Wu H D, Kang X M. 2020. Study of alpine grassland degradation in northern Tibet based on an analytical hierarchy process. Chinese Journal of Applied and Environmentrl Biology, 26 (1): 17-24. (in Chinese) | |
Wu H X, Lu L, Meng F X, Guo Y H, Liu Q Y. 2017. Reports on national surveillance of rodents in China, 2006-2015. Chinese Journal Vector Biology and Control, 28 (6): 517-522. (in Chinese) | |
Yang X G, Wang T L, Zou B, Chang W Y, Hou Y. 2019a. Rodent diversity in the farmlands of Shanxi Province. Plant Protection, 45 (2): 138-142. (in Chinese) | |
Yang X G, Zhang J X, Zhang J Z, Wang T L, Zou B, Chang W Y, Hou Y, Liu J. 2019b. Investigation on distribution status and age structure of Rattus flavipectus population in Shanxi. Journal of Shanxi Agricuture Science, 47 (1): 106-108. (in Chinese) | |
Yi J R, Huang Y C, Wu J, Zhang S Y, Cai S W, Duan J H, Yin W X, Lin L F. 2005. Study on the resistance of commensal rodents to anticoagulant rodenticide in Qingyuan, Guangdong. Chinese Journal of Vector Biology and Control, 16 (4): 274-276. (in Chinese) | |
Zhang M W, Chen A G, Wang Y, Guo C, Liu H F, Li B. 2000. The biological characteristics of the buff‑breasted rats (Rattus flavipectus) in Yangtze Valley in China. Acta Theriologica Sinica, 20 (3): 200-211. (in Chinese) | |
Zhang M W, Wang K L, Wang Y, Guo C, Li B. 2004. Population dynamics of rodents after flood in middle reaches of the Yangtze River. Chinese Journal of Applied and Environmental Biology, 10 (2): 184-188. (in Chinese) | |
Zhang S Y, Hu J, Liang L, Pan R W, Mo Z D, Cen Q Q. 2002. Resistance of Rattus flavipectus and Rattus norvegicus to anticoagulants in Zhanjiang, China. Chinese Journal of Vector Biology and Control, 13 (1): 66-68. (in Chinese) | |
Zheng Z M, Jiang Z K, Chen A G. 2008. Conspectus of Glires. Shanghai: Shanghai Jiao Tong University Press. (in Chinese) | |
王金枝, 颜亮, 吴海东, 康晓明. 2020. 基于层次分析法研究藏北高寒草地退化的影响因素. 应用与环境生物学报, 26 (1): 17-24. | |
张世炎, 胡杰, 梁练, 盘瑞伟, 莫卓鼎, 岑清泉. 2002. 湛江地区黄胸鼠和褐家鼠对抗凝血剂的抗药性. 中国媒介生物学及控制杂志, 13 (1): 66-68. | |
张美文, 王克林, 王勇, 郭聪, 李波. 2004. 长江中游农区洪涝灾害后鼠类数量动态. 应用与环境生物学报, 10 (2): 184-188. | |
张美文, 陈安国, 王勇, 郭聪, 刘辉芬, 李波. 2000. 长江流域黄胸鼠生物学特性观察. 兽类学报, 20 (3): 200-211. | |
吴海霞, 鲁亮, 孟凤霞, 郭玉红, 刘起勇. 2017. 2006—2015 我国鼠类监测报告. 中国媒介生物学及控制杂志, 28 (6): 517-522. | |
易建荣, 黄亿初, 吴军, 张世炎, 蔡松武, 段金花, 阴伟雄, 林立丰. 2005. 清远市家栖鼠对第一代抗凝血灭鼠剂抗药性研究. 中国媒介生物学及控制杂志, 16 (4): 274-276. | |
郑智民, 姜志宽, 陈安国. 2008. 啮齿动物学. 上海: 上海交通大学出版社. | |
杨新根, 王庭林, 邹波, 常文英, 侯玉. 2019a. 山西省农田啮齿动物多样性研究. 植物保护, 45 (2): 138-142. | |
杨新根, 张健旭, 张建珍, 王庭林, 邹波, 常文英, 侯玉, 刘娇. 2019b. 山西省黄胸鼠种群的分布现状及年龄结构调查. 山西农业科学, 47 (1): 106-108. | |
高志祥, 施大钊, 郭永旺, 吴新平, 嵇莉莉, 杨建国, 袁志强. 2008. 北京地区黑线姬鼠对杀鼠灵抗药性的测定. 中国媒介生物学及控制杂志, 19 (2): 90-92. | |
董天义. 2001. 抗凝血灭鼠剂应用研究. 北京: 中国科学技术出版社. |
[1] | GUO Min, LIANG Jie, HE Xiangyang, OU Weixin, PENG Dingxiong, MAI Zhanzhao, HUANG Haitao, ZHANG Libiao. An investigation of brodifacoum resistance and Vkorc1 gene polymorphism in the Rattus norvegicus from Macao [J]. ACTA THERIOLOGICA SINICA, 2022, 42(6): 698-704. |
[2] | ZHOU Guodong, ZHU Qian, SHI Wenjian, YUAN Peng, JIANG Shijin, XIE Zhijing. Survey on serotypes of Salmonella isolated from mink and its pathogenesis in mice [J]. ACTA THERIOLOGICA SINICA, 2021, 41(3): 245-253. |
[3] | SUN Xinde, ZHANG Senfu, ZHOU Hua, GU Long, JIANG Qin . THE RESISTANCE OF BATS TO INTERFERENCE DURING OBSTACLE AVOIDANCE [J]. , 1988, 8(1): 21-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||