ACTA THERIOLOGICA SINICA ›› 2022, Vol. 42 ›› Issue (6): 677-686.DOI: 10.16829/j.slxb.150587
• ORIGINAL PAPERS • Previous Articles Next Articles
Xiujing ZHANG1, Heng WANG1, Qiumei ZHONG1, Chenxi YANG1,2, Jianli WANG1,2()
Received:
2021-07-10
Accepted:
2022-06-21
Online:
2022-11-30
Published:
2022-12-02
Contact:
Jianli WANG
张修静1, 王恒1, 钟秋梅1, 杨晨希1,2, 王建礼1,2()
通讯作者:
王建礼
作者简介:
张修静 (2001- ),女,本科生,主要从事动物生理生态学研究;基金资助:
CLC Number:
Xiujing ZHANG, Heng WANG, Qiumei ZHONG, Chenxi YANG, Jianli WANG. The variations of nephrons and relevant function factors between hibernating and non-hibernating Daurian ground squirrels[J]. ACTA THERIOLOGICA SINICA, 2022, 42(6): 677-686.
张修静, 王恒, 钟秋梅, 杨晨希, 王建礼. 冬眠和非冬眠状态达乌尔黄鼠肾单位及相关功能因子的比较[J]. 兽类学报, 2022, 42(6): 677-686.
目标基因 Target gene | 引物序列 (5′-3′) Primer sequence (5′-3′) | 片段大小 Product length (bp) |
---|---|---|
β-actin forward | ACTCGTCGTACTCCTGCTT | 223 |
β-actin reverse | AAGACCTCTATGCCAACACC | |
AQP1 forward | TCAACCCAGCCGTCACAC | 189 |
AQP1 reverse | CCTGGCCTGAGTTCACAC | |
AQP2 forward | GAGATCACGCCAGCAGAAAT | 183 |
AQP2 reverse | GAAACCGATGGAGAGAGCAG | |
AQP3 forward | GTGATGTTTGGCTGTGGGTC | 161 |
AQP3 reverse | GCAAAGGTCACAGCAGGATT | |
V2R forward | CGTCAAGTACCTGCAGATGG | 171 |
V2R reverse | CTGAGAAGAAGCGAGAAGGC | |
eNOS forward | CACCGGCATCAGACCACA | 189 |
eNOS reverse | GCCGACTCTGTACTTTCCTT |
Table 1 Primers information used in the experiment
目标基因 Target gene | 引物序列 (5′-3′) Primer sequence (5′-3′) | 片段大小 Product length (bp) |
---|---|---|
β-actin forward | ACTCGTCGTACTCCTGCTT | 223 |
β-actin reverse | AAGACCTCTATGCCAACACC | |
AQP1 forward | TCAACCCAGCCGTCACAC | 189 |
AQP1 reverse | CCTGGCCTGAGTTCACAC | |
AQP2 forward | GAGATCACGCCAGCAGAAAT | 183 |
AQP2 reverse | GAAACCGATGGAGAGAGCAG | |
AQP3 forward | GTGATGTTTGGCTGTGGGTC | 161 |
AQP3 reverse | GCAAAGGTCACAGCAGGATT | |
V2R forward | CGTCAAGTACCTGCAGATGG | 171 |
V2R reverse | CTGAGAAGAAGCGAGAAGGC | |
eNOS forward | CACCGGCATCAGACCACA | 189 |
eNOS reverse | GCCGACTCTGTACTTTCCTT |
Fig. 1 The renal histological structure of Daurian ground squirrels among the active, hibernating and arousal periods. a: Renal sagittal plane (Scale bar = 1 000 μm); b: Renal cortex (Scale bar = 100 μm); c: Renal medulla (Scale bar = 100 μm); d: Glomerulus in summer active period; e: Glomerulus in winter hibernating period; f: Glomerulus in early spring arousal period; g: Cortical tubule in summer active period; h: Cortical tubule in winter hibernating period; i: Cortical tubule in early spring arousal period; GL: glomerulus; DT: distal convoluted tubule; PT: proximal convoluted tubule. Scale bar = 20 μm
参数 Parameters | 活动期 Active period (n = 6) | 冬眠期 Hibernating period (n = 6) | 出眠期 Arousal period (n = 5) |
---|---|---|---|
皮质浅层近曲小管相对管径 RDPS | 0.94 ± 0.01a | 0.82 ± 0.02b | 0.75 ± 0.02c |
皮质中层近曲小管相对管径 RDPM | 0.94 ± 0.01a | 0.80 ± 0.02b | 0.75 ± 0.02c |
髓旁近曲小管相对管径 RDPP | 0.93 ± 0.01a | 0.80 ± 0.01b | 0.75 ± 0.02c |
皮质浅层远曲小管相对管径 RDDS | 1.23 ± 0.02a | 1.04 ± 0.01b | 0.94 ± 0.01c |
皮质中层远曲小管相对管径 RDDM | 1.23 ± 0.01a | 1.05 ± 0.01b | 0.94 ± 0.02c |
髓旁远曲小管相对管径 RDDP | 1.22 ± 0.01a | 1.03 ± 0.01b | 0.94 ± 0.01c |
皮质部近曲小管数 / 远曲小管数 CPT / CDT | 2.74 ± 0.05a | 2.36 ± 0.14b | 2.73 ± 0.12a |
近髓质近曲小管数 / 远曲小管数 JPT / JDT | 3.83 ± 0.13a | 3.39 ± 0.12a | 3.79 ± 0.17a |
肾小球密度 GD (ind./mm2) | 8.82 ± 0.52a | 7.22 ± 0.34b | 7.29 ± 0.49b |
Table 2 The histological parameters of nephrons in Daurian ground squirrels among the active, hibernating and arousal periods (mean ± SE)
参数 Parameters | 活动期 Active period (n = 6) | 冬眠期 Hibernating period (n = 6) | 出眠期 Arousal period (n = 5) |
---|---|---|---|
皮质浅层近曲小管相对管径 RDPS | 0.94 ± 0.01a | 0.82 ± 0.02b | 0.75 ± 0.02c |
皮质中层近曲小管相对管径 RDPM | 0.94 ± 0.01a | 0.80 ± 0.02b | 0.75 ± 0.02c |
髓旁近曲小管相对管径 RDPP | 0.93 ± 0.01a | 0.80 ± 0.01b | 0.75 ± 0.02c |
皮质浅层远曲小管相对管径 RDDS | 1.23 ± 0.02a | 1.04 ± 0.01b | 0.94 ± 0.01c |
皮质中层远曲小管相对管径 RDDM | 1.23 ± 0.01a | 1.05 ± 0.01b | 0.94 ± 0.02c |
髓旁远曲小管相对管径 RDDP | 1.22 ± 0.01a | 1.03 ± 0.01b | 0.94 ± 0.01c |
皮质部近曲小管数 / 远曲小管数 CPT / CDT | 2.74 ± 0.05a | 2.36 ± 0.14b | 2.73 ± 0.12a |
近髓质近曲小管数 / 远曲小管数 JPT / JDT | 3.83 ± 0.13a | 3.39 ± 0.12a | 3.79 ± 0.17a |
肾小球密度 GD (ind./mm2) | 8.82 ± 0.52a | 7.22 ± 0.34b | 7.29 ± 0.49b |
Fig. 2 The concentrations of serum creatinine, urine and ADH of Daurian ground squirrels among the active, hibernating and arousal periods. Different letters on the columns indicate significant differences, P < 0.05
Fig. 3 The renal gene expression of AQP1, AQP2, AQP3, V2R and eNOS in Duarian ground squirrels among the active, hibernating and arousal periods. Different letters on the columns indicate significant differences, P < 0.05
Andrews M T. 2019. Molecular interactions underpinning the phenotype of hibernation in mammals. Journal of Experimental Biology, 222:jeb160606. | |
Brown D C, Mulhausen R O, Andrew D J, Seal U S. 1971. Renal function in anesthetized dormant and active bears. The American Journal of Physiology, 220 (1): 293-298. | |
Carey H V, Andrews M T, Martin S L. 2003. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiological Reviews, 83 (4): 1153-1181. | |
Dang K, Gao Y F. 2016. Physiological adaptation of skeletal muscles and potential mechanism in hibernators. Chinese Journal of Zoology, 51 (3): 497-506. (in Chinese) | |
Diaz G B, Ojeda R A. 1999. Kidney structure and allometry of Argentine desert rodents. Journal of Arid Environments, 41 (4):453-461. | |
Elgot A, El Hiba O, Belkouch M, Gamrani H. 2018. The underlying physiological basis of the desert rodent Meriones shawi’s survival to prolonged water deprivation: central vasopressin regulation on peripheral kidney water channels AQPs-2. Acta Histochemica, 120 (2): 65-72. | |
Feng N Y, Junkins M S, Merriman D K, Bagriantsev S N, Gracheva E O. 2019. Osmolyte depletion and thirst suppression allow hibernators to survive for months without water. Current Biology, 29 (18): 3053-3058. | |
Gallardo P A, Cortes A, Bozinovic F. 2005. Phenotypic flexibility at the molecular and organismal level allows desert-dwelling rodents to cope with seasonal water availability.Physiological and Biochemical Zoology, 78: 145-152. | |
García N H, Pomposiello S I, Garvin J L.1996. Nitric oxide inhibits ADH-stimulated osmotic water permeability in cortical collecting ducts. American Journal of Physiology, 270 (1Pt2): F206-210. | |
Hammond K A, Janes D N. 1998. The effects of increased protein intake on kidney size and function. The Journal of Experimental Biology, 201 ( Pt13): 2081-2090. | |
Hao S C, Sun J H, Yu K L, Bi P, Song J S, Xia W. 1994. Ultrastructure observation of kidneys and adrenal glands of hibernal animals (Hedgehogs) in different periods. Journal of Tianjin Normal University (Natural Science Edition), 14 (1): 47-51.(in Chinese) | |
Hou T D, Zhou H, Yang R, Cheng F, Ma Y L, Xu R. 2011. The expression changes of c‑fos in the paraventricular nucleus of hyphothalamus and AQP2 in the kidney at stress rats during water deprivation. Journal of Northwest Normal University (Natural Science), 47 (2): 97-101. (in Chinese) | |
Huang Z X. 2012. The expression of aquaporin AQP1/AQP2 in the Bactrian camel’s kidney.Master thesis. Lanzhou: Lanzhou University. (in Chinese) | |
Ishibashi K, Kondo S, Hara S, Morishita Y. 2011. The evolutionary aspects of aquaporin family.American Journal of Physiology . Regulatory, Integrative and Comparative Physiology, 300 (3): 566-576. | |
Jani A, Epperson E, Martin J, Arijana P, Danica L, Sandra L M, Charles L E. 2011. Renal protection from prolonged cold ischemia and warm reperfusion in hibernating squirrels. Transplantation, 92 (11): 1215-1221. | |
Jani A, Martin S L, Jain S, Keys D, Edelstein C L. 2013. Renal adaptation during hibernation. American Journal of Physiology. Renal Physiology, 305 (11): F1521-1532. | |
Jia D. 2011. The micro- and ultra-structural characteristics of the kidney and the testis in the frog (Rana chensinensis), in Laoshan Mountains and their adaptation to the physiological function. Master thesis. Shenyang: Shenyang Normal University. (in Chinese) | |
Karpovich S A, Toien O, Buck C L, Barnes B M. 2009. Energetics of arousal episodes in hibernating arctic ground squirrels. Journal of Comparative Physiology B, 179 (6): 691-700. | |
Knepper M A, Kwon T H, Nielsen S. 2015. Molecular physiology of water balance. New England Journal of Medicine, 372 (14): 1349-1358. | |
Li J, Wang L, Luo X L, Luo X L, Guan J Q, Zhang X F. 2021. Cloning of AQP1 and AQP3 genes and their locations and expressions in different tissues of yak (Bos grunniens). Acta Theriologica Sinica, 41 (1): 51-58. (in Chinese) | |
Liu Y, Wang L Z. 2014. Comparison research of structure of kidneys in three rodents. Journal of Shaanxi Institute of Education, 30 (2): 117-120. (in Chinese) | |
Liu Y H, Long J, He L Q, Li T J, He X G, Ou Y L, Li J Z, Yin Y L. 2020. Advances in research on the effects of aquaporins on animal health. Scientia Sinica (Vitae), 50 (4): 427-437. (in Chinese) | |
Liu Z L.1992.Study on the relative medullary thickness of Brandt’s voles and ground squirrels. Chinese Journal of Vector Biology and Control, 3 (3): 159-161. (in Chinese) | |
Nouri Z, Zhang X Y, Wang D H. 2020. The physiological and molecular mechanisms to maintain water and salt homeostasis in response to high salt intake in Mongolian gerbils (Meriones unguiculatus).Journal of Comparative Physiology B, 190 (5):641-654. | |
Rice S A, ten Have G A M, Reisz J A, Gehrke S, Stefanoni D, Frare C, Barati Z, Coker R H, D’Alessandro A, Deutz N E P, Drew K L. 2020. Nitrogen recycling buffers against ammonia toxicity from skeletal muscle breakdown in hibernating arctic ground squirrels. Nature Metabolism, 2 (12): 1459-1471. | |
Sandovici M, Henning R H, Hut R A, Arjen M S, Anne H E, Harry V G, Leo E D. 2004. Differential regulation of glomerular and interstitial endothelial nitric oxide synthase expression in the kidney of hibernating ground squirrel. Nitric Oxide, 11 (2): 194-200. | |
Srivastava A, Kumar S V, Fiddes I, Sheehan S M, Seger R L, Barter M E, Neptune‑Bear S, Lindqvist C, Korstanje R. 2019. Genome assembly and gene expression in the American black bear provides new insights into the renal response to hibernation. DNA Research, 26 (1): 37-44. | |
Sun X Y, Gao Y F, Wang Q, Jiang S F, Guo S P, Liu K. 2012. The artificial feeding, breeding and researchon hibernation bouts of the Daurian ground squirrel (Spermophilus daurocus). Acta Theriologica Sinica, 32 (4): 356-361. (in Chinese) | |
Takei Y, Bartolo R C, Fujihara H, Ueta Y, Donald J A. 2012. Water deprivation induces appetite and alters metabolic strategy in Notomys alexis: unique mechanisms for water production in the desert. Proceedings of the Royal Society B Biological Sciences, 279 (1738): 2599-2608. | |
Talmatamar A, Chaabane I, Salem S, Touati H, Remana S, Chevalier C, Moudilou E N, Exbrayat J M, Barka‑Dahane Z. 2020. Kidney functional morphology variations between spring and winter in the saharan male lizard Uromastyx acanthinura (sauria, agamidae), with special reference to body water economy. Issue and Cell, 67 (2): 101448. | |
Wang D H, Zhao Z J, Zhang X Y, Zhang Z Q, Xu D L, Xing X, Yang S M, Wang Z K, Gao Y F, Yang M. 2021. Research advances and prespectives in mammal physiological ecology in China. Acta Theriologica Sinica, 41 (5): 537-555.(in Chinese) | |
Wang H, He C, Yang C X, Ma X M, Wang J L. 2020. Comparison on sociability and social behaviors between wild and laboratory F1 generation Daurian ground squirrels (Spermophilus dauricus). Chinese Journal of Wildlife, 41 (3): 580-588. (in Chinese) | |
Wang Y. 2019. Seasonal expressions of the reproductive hormones’ receptors in the uterus of the wild Daurian ground squirrels (Spermophilus dauricus). Master thesis. Beijing: Beijing Forestry University. (in Chinese) | |
Xing X, Tang G B, Sun M Y, Yu C, Song S Y, Liu X Y, Yang M, Wang D H. 2016. Leptin regulates energy intake but fails to facilitate hibernation in fattening Daurian ground squirrels (Spermophilus dauricus). Journal of Thermal Biology, 57 (1): 35-43. | |
Xu M M, Wang D H. 2016. Water deprivation up‑regulates urine osmolality and renal aquaporin 2 in Mongolian gerbils (Meriones unguiculatus). Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology, 194: 37-44. | |
Yang M, Xing X, Guan S J, Zhao Y, Wang Z Y, Wang D H. 2011. Hibernation patterns and changes of body temperature in Daurian ground squirrels (Spermophilus dauricus) during hibernation. Acta Theriologica Sinica, 31 (4): 387-395. (in Chinese) | |
Yuan J L, Xu X H, Shi S, Zhang Y, Xu Y M. 2019. Morphological comparison of kidneys between Meriones meridianus and SD rats. Acta Laboratorium Animalis Scientia Sinica, 27 (6): 765-769. (in Chinese) | |
Zancanaro C, Malatesta M, Mannello F, Vogel P, Fakan S. 1999. The kidney during hibernation and arousal from hibernation. A natural model of organ preservation during cold ischaemia and reperfusion. Nephrology, Dialysis, Transplantation, 14 (8): 1982-1990. | |
Zhang C Y, Hou T D, Cheng F, Sang Q. 2014. Expression of AQP1, 2 proteins in kidney of filial Meriones meridianus . Chinese Journal of Zoology, 49 (2): 162-169. (in Chinese) | |
Zhang G X, Zhao J, Liu B Y, Zhang Y F, Xie M. 2016. Comparative study of effects of spleen-strengthening recipes on water-electrolyte metabolism and water transport in rats with spleen-deficiency syndrome. Journal of Guangzhou University of Traditional Chinese Medicine, 33 (1): 51-55. (in Chinese) | |
Zhang M, Wang D H. 2018. Comparison of renal morphology in five rodent species from Inner Mongolia grasslands. Acta Theriologica Sinica, 38 (1): 36-45. (in Chinese) | |
王宇. 2019.生殖激素受体在野生达乌尔黄鼠子宫内的季节性表达研究. 北京: 北京林业大学硕士学位论文. | |
王恒, 赫晨, 杨晨希, 马小梅, 王建礼. 2020. 野生达乌尔黄鼠与室内F1代的社会性及社会行为比较. 野生动物学报, 41 (3): 580-588. | |
王德华, 赵志军, 张学英, 张志强, 徐德立, 邢昕, 杨生妹, 王政昆, 高云芳, 杨明.2021. 中国哺乳动物生理生态学研究进展与展望. 兽类学报, 41 (5): 537-555. | |
刘莹, 王立志. 2014. 三种啮齿类动物肾脏结构比较研究. 陕西学前师范学院学报, 30 (2): 117-120. | |
刘永辉, 龙静, 何流琴, 李铁军, 何兴国, 欧阳龙, 李建中, 印遇龙. 2020. 水通道蛋白对动物机体健康影响研究进展. 中国科学: 生命科学, 50 (4): 427-437. | |
刘志龙. 1992. 布氏田鼠和达乌尔黄鼠肾脏指数比较研究. 中国媒介生物学及控制杂志, 3 (3): 159-161. | |
孙小勇, 高云芳, 王琦, 姜山峰, 郭树攀, 刘坤. 2012. 达乌尔黄鼠实验室饲养、繁殖及其冬眠阵. 兽类学报, 32 (4): 356-361. | |
李娟, 王利, 罗晓林, 官久强, 张翔飞. 2021. 牦牛水通道蛋白AQP1和AQP3基因克隆及在不同组织中表达和定位. 兽类学报, 41 (1): 51-58. | |
杨明, 邢昕, 管淑君, 赵岩, 王子英, 王德华. 2011. 达乌尔黄鼠冬眠期间体温的变化和冬眠模式. 兽类学报, 31 (4): 387-395. | |
张梦, 王德华. 2018. 内蒙古草原五种啮齿动物肾脏形态学特征比较. 兽类学报, 38 (1): 36-45. | |
张广霞, 赵静, 刘碧原, 张媛凤, 谢鸣. 2016. 不同健脾方对脾虚模型大鼠水盐代谢及水转运的作用比较. 广州中医药大学学报, 33 (1): 51-55. | |
张春燕, 侯天德, 程昉, 桑秋. 2014. 子午沙鼠子鼠肾中水通道蛋白 1、2的表达. 动物学杂志, 49 (2): 162-169. | |
郝泗城, 孙建华, 宇克莉, 毕平, 孙金生, 夏文. 1994. 不同生活时期冬眠动物 (刺猬) 肾脏与肾上腺超微结构观察. 天津师范大学学报 (自然科学版), 14 (1): 47-51. | |
侯天德, 周涵, 杨荣, 程昉, 马玉兰, 徐瑞. 2011. 大鼠禁水应激下丘脑室旁核c‑fos与肾水通道蛋白2表达的变化. 西北师范大学学报 (自然科学版), 47 (2): 97-101. | |
袁江玲, 徐晓辉, 史深, 张燕, 徐艺玫. 2019. 子午沙鼠与SD大鼠肾脏形态学特征的比较. 中国实验动物学报, 27 (6): 765-769. | |
贾迪. 2011. 中国林蛙肾脏与精巢功能形态的年周变化.沈阳: 沈阳师范大学硕士学位论文. | |
党凯, 高云芳.2016. 冬眠动物骨骼肌生理适应及机制的研究进展.动物学杂志, 51 (3): 497-506. | |
黄祖贤. 2012. 水通道蛋白AQP1 / AQP2在双峰驼肾脏的表达. 兰州: 兰州大学硕士学位论文. |
[1] | SHANG Zhengwen, YANG Ming, WANG Dehua, XING Xin. The roles of brown adipose tissue in thermoregulatory mechanisms of hibernators [J]. ACTA THERIOLOGICA SINICA, 2023, 43(5): 608-619. |
[2] | Min MAO, Ming YANG, Xinyu LIU. Effects of hibernation on cecal microbiota in Daurian ground squirrel [J]. ACTA THERIOLOGICA SINICA, 2022, 42(4): 420-431. |
[3] | WANG Heng, WANG Jianli, YANG Chenxi, HE Yating. Histological structure of the vomeronasal organ and accessory olfactory bulb and the seasonal changes of olfactory bulb c-Fos expression in Spermophilus dauricus [J]. ACTA THERIOLOGICA SINICA, 2021, 41(6): 685-694. |
[4] | WANG Dehua, ZHAO Zhijun, ZHANG Xueying, ZHANG Zhiqiang, XU Deli, XING Xin, YANG Shengmei, WANG Zhengkun, GAO Yunfang, YANG Ming. Research advances and prespectives in mammal physiological ecology in China [J]. ACTA THERIOLOGICA SINICA, 2021, 41(5): 537-555. |
[5] | ZHANG Yongjun, HE Yuchao, ZHAO Juanjun, CHEN Yao, LI Yanpeng, HUANG Zhipang, CUI Liangwei, XIAO Wen. Activity patterns of Asiatic black bear(Ursus thibetanus) on the Mt.Lasha Yunling Nature Reserve [J]. ACTA Theriologica Sinica, 2021, 41(2): 136-143. |
[6] | BAI Ge, YANG Ming, SONG Shiyi, PENG Xia, ZHANG Huiying, LIU Xinyu. aptive breeding of Daurian ground squirrel after overwintering in the laboratory [J]. ACTA THERIOLOGICA SINICA, 2017, 37(2): 172-178. |
[7] | XING Xin, TANG Gangbin, SUN Mingyue, YANG Ming, WANG Dehua. The roles of leptin on energy balance and thermoregulation in post-fattening Daurian ground squirrels [J]. ACTA THERIOLOGICA SINICA, 2015, 35(4): 379-388. |
[8] | MEN Liyuan, SONG Shiyi, LIU Xinyu, PENG Xia, LV Zheng, LIU Shuai, CAI Luna, YANG Ming. Differential gene expression associated with glycometabolism in the white adipose tissue during fattening and hibernation in Daurian ground squirrel (Spermophilus dauricus) [J]. ACTA THERIOLOGICA SINICA, 2015, 35(4): 422-430. |
[9] | LV Zheng, CAI Luna, SONG Shiyi, LIU Xinyu, PENG Xia, YANG Ming. Hibernation and energy consumption of Daurian ground squirrels (Spermophilus dauricus) under light-dark cycle conditions [J]. ACTA THERIOLOGICA SINICA, 2015, 35(4): 398-404. |
[10] | LV Zheng, SONG Shiyi, YANG Ming, PENG Xia. Body temperature,metabolic rate and energetic characteristics of daurian ground squirrels (Spermophilus dauricus)during preparation of hibernation [J]. ACTA THERIOLOGICA SINICA, 2014, 34(4): 348-. |
[11] | ZHANG Chunyan, HOU Tiande, XU Dengcui, DING Weigang, ZHANG Huiying. Light microscope structure of Vormela peregusna kidney and expression of AQP1,2 in kidney [J]. ACTA THERIOLOGICA SINICA, 2014, 34(4): 406-. |
[12] | ZHANG Jianping ,LI Shuwei,YU Weijiang. Role of aquaporins in kindneys in adaptation to arid environment in yarkand hares (Lepus yarcandensis) [J]. , 2013, 33(4): 377-382. |
[13] | SUN Xiaoyong,GAO Yunfang ,WANG Qi ,JIANG Shanfeng ,GUO Shupan ,LIU Kun. The artificial feeding,breeding and research on hibernation bouts of the Daurian ground squirrel (Spermophilus dauricus) [J]. , 2012, 32(4): 356-361. |
[14] | YANG Ming,XING Xin,GUAN Shujun,ZHAO Yan,WANG Ziying,WANG Dehua. Hibernation patterns and changes of body temperature in Daurian ground squirrels (Spermophilus dauricus) during hibernation [J]. , 2011, 31(4): 387-395. |
[15] | . The differences of c-Fos expression in Hedgehog (Erinaceus europaeus)olfactory bulb during hibernation and non-hibernation [J]. , 2011, 31(3): 272-277. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||