ACTA THERIOLOGICA SINICA ›› 2022, Vol. 42 ›› Issue (4): 420-431.DOI: 10.16829/j.slxb.150622
• ORIGINAL PAPERS • Previous Articles Next Articles
Min MAO, Ming YANG, Xinyu LIU()
Received:
2021-10-17
Accepted:
2022-04-06
Online:
2022-07-30
Published:
2022-07-22
Contact:
Xinyu LIU
通讯作者:
刘新宇
作者简介:
毛敏 (1997- ),女,硕士研究生,主要从事动物生理生态学研究.
基金资助:
CLC Number:
Min MAO, Ming YANG, Xinyu LIU. Effects of hibernation on cecal microbiota in Daurian ground squirrel[J]. ACTA THERIOLOGICA SINICA, 2022, 42(4): 420-431.
毛敏, 杨明, 刘新宇. 冬眠对达乌尔黄鼠盲肠菌群的影响[J]. 兽类学报, 2022, 42(4): 420-431.
分组 Group | 观察到的OTU数 Observed species | Chao1指数 Chao1 index | ACE指数 ACE index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|---|---|
起始育肥期组IF | 533.13 ± 23.42a | 588.65 ± 26.17b | 584.73 ± 27.29b | 6.22 ± 0.29a | 0.94 ± 0.02ab |
快速育肥期组RF | 531.00 ± 41.45a | 591.35 ± 42.94b | 583.64 ± 42.94b | 6.19 ± 0.29a | 0.93 ± 0.02b |
育肥完成期组FF | 585.29 ± 15.33a | 665.68 ± 12.83ab | 647.96 ± 15.07ab | 6.87 ± 0.10a | 0.98 ± 0.00a |
冬眠早期组EH | 527.13 ± 35.05a | 603.06 ± 42.69b | 588.95 ± 42.09b | 6.56 ± 0.13a | 0.97 ± 0.00ab |
冬眠晚期组LH | 577.00 ± 23.35a | 666.01 ± 29.67ab | 654.41 ± 28.10ab | 6.83 ± 0.11a | 0.98 ± 0.00ab |
出眠期组A | 640.38 ± 29.84a | 762.99 ± 37.36a | 752.93 ± 34.15a | 6.78 ± 0.13a | 0.97 ± 0.00ab |
Table 1 Index table of Alpha diversity of cecal microbiota of Daurian ground squirrel in different periods
分组 Group | 观察到的OTU数 Observed species | Chao1指数 Chao1 index | ACE指数 ACE index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|---|---|
起始育肥期组IF | 533.13 ± 23.42a | 588.65 ± 26.17b | 584.73 ± 27.29b | 6.22 ± 0.29a | 0.94 ± 0.02ab |
快速育肥期组RF | 531.00 ± 41.45a | 591.35 ± 42.94b | 583.64 ± 42.94b | 6.19 ± 0.29a | 0.93 ± 0.02b |
育肥完成期组FF | 585.29 ± 15.33a | 665.68 ± 12.83ab | 647.96 ± 15.07ab | 6.87 ± 0.10a | 0.98 ± 0.00a |
冬眠早期组EH | 527.13 ± 35.05a | 603.06 ± 42.69b | 588.95 ± 42.09b | 6.56 ± 0.13a | 0.97 ± 0.00ab |
冬眠晚期组LH | 577.00 ± 23.35a | 666.01 ± 29.67ab | 654.41 ± 28.10ab | 6.83 ± 0.11a | 0.98 ± 0.00ab |
出眠期组A | 640.38 ± 29.84a | 762.99 ± 37.36a | 752.93 ± 34.15a | 6.78 ± 0.13a | 0.97 ± 0.00ab |
Fig. 1 The rarefaction curves of observed species of Daurian ground squirrel in different periods. Each sample in the figure is represented by a different curve, and different colors indicate different groupings. With the increase of sequence per sample, the observed species also increases. Finally, the curve began to plateau, indicating that the sequencing quantity of all samples was reasonable, and could cover the information of the vast majority of microbial species in the samples. IF: Initial fattening group; RF: Rapid fattening group; FF: Finished fattening group; EH: Early hibernation group; LH: Late hibernation group; A: Arousal group; the same to figure 2 - 5
Fig. 2 Principal coordinate analysis (PCoA) of the weighted (A) and unweighted (B) UniFrac distance matrix compared with the cecal microbiota of Daurian ground squirrel in different periods. The abscissa and ordinate represent are the two selected main axes, and the percentage represents the contribution of the main axis to explain the difference in sample composition. The scale is relative distance has no practical significance. Confidence ellipses of different colors represent different groups and the dots of different colors and shapes represent samples of different groups. The closer the points of the two samples are, the more similar the cecal microbiota of the two samples is proved
Fig. 3 Composition of relative abundance of cecal microbiota in Daurian ground squirrel at phylum (A), family (B) and genus (C) levels. Different species are indicated in different colors, and the length of the column represents the proportion. Others represent other bacterial taxa and undefined bacterial taxa. Asterisks indicate unclassified genera at the family level
类群 Taxa | 起始育肥期组IF | 快速育肥期组RF | 育肥完成期组FF | 冬眠早期组EH | 冬眠晚期组LH | 出眠期组 A | |
---|---|---|---|---|---|---|---|
门Phylum | 厚壁菌门 Firmicutes | 0.7794 ± 0.0236a | 0.7448 ± 0.0291ab | 0.7629 ± 0.0180ab | 0.5783 ± 0.0347b | 0.7519 ± 0.0287a | 0.8225 ± 0.0232a |
拟杆菌门 Bacteroidetes | 0.1863 ± 0.0242b | 0.2207 ± 0.0289ab | 0.2049 ± 0.0167b | 0.3357 ± 0.0255a | 0.1810 ± 0.0300b | 0.1512 ± 0.0254b | |
疣微菌门 Verrucomicrobia | 0.0142 ± 0.0042abc | 0.0090 ± 0.0051bc | 0.0079 ± 0.0019abc | 0.0658 ± 0.0274a | 0.0474 ± 0.0126ab | 0.0048 ± 0.0012c | |
Epsilonbacteraeota | 0.0000 ± 0.0000ab | 0.0001 ± 0.0001a | 0.0004 ± 0.0003ab | 0.0001 ± 0.0000ab | 0.0000 ± 0.0000b | 0.0000 ± 0.0000ab | |
科Family | 瘤胃菌科 Ruminococcaceae | 0.2395 ± 0.0276ab | 0.1799 ± 0.0217ab | 0.3185 ± 0.0303a | 0.1711 ± 0.0209b | 0.1982 ± 0.0312ab | 0.2261 ± 0.0263ab |
乳杆菌科 Lactobacillaceae | 0.1923 ± 0.0686a | 0.1052 ± 0.0405a | 0.0283 ± 0.0121ab | 0.0009 ± 0.0003b | 0.0009 ± 0.0003b | 0.0471 ± 0.0277ab | |
拟杆菌科 Bacteroidaceae | 0.0361 ± 0.0110b | 0.0544 ± 0.0133ab | 0.0477 ± 0.0112ab | 0.1126 ± 0.0144a | 0.0395 ± 0.0156b | 0.0226 ± 0.0053b | |
艾克曼氏菌科 Akkermansiaceae | 0.0142 ± 0.0042abc | 0.0090 ± 0.0051bc | 0.0079 ± 0.0019abc | 0.0658 ± 0.0274a | 0.0474 ± 0.0126ab | 0.0048 ± 0.0012c | |
Family | 0.0242 ± 0.0036ab | 0.0232 ± 0.0019ab | 0.0317 ± 0.0038a | 0.0165 ± 0.0033b | 0.0282 ± 0.0046ab | 0.0271 ± 0.0066ab | |
消化球菌科 Peptococcaceae | 0.0047 ± 0.0015b | 0.0019 ± 0.0004b | 0.0052 ± 0.0013ab | 0.0126 ± 0.0040ab | 0.0187 ± 0.0031a | 0.0111 ± 0.0028ab | |
韦荣球菌科 Erysipelotrichaceae | 0.0035 ± 0.0009b | 0.0049 ± 0.0013ab | 0.0054 ± 0.0018ab | 0.0093 ± 0.0017ab | 0.0098 ± 0.0009a | 0.0198 ± 0.0072a | |
氨基酸球菌科 Acidaminococcaceae | 0.0014 ± 0.0013ab | 0.0205 ± 0.0072a | 0.0078 ± 0.0049ab | 0.0028 ± 0.0028ab | 0.0007 ± 0.0007b | 0.0024 ± 0.0017ab | |
属Genus | 乳杆菌属 Lactobacillus | 0.1923 ± 0.0686a | 0.1052 ± 0.0405a | 0.0283 ± 0.0121ab | 0.0009 ± 0.0003b | 0.0009 ± 0.0003b | 0.0471 ± 0.0277ab |
拟杆菌属 Bacteroides | 0.0361 ± 0.0110b | 0.0544 ± 0.0133ab | 0.0477 ± 0.0112ab | 0.1126 ± 0.0144a | 0.0395 ± 0.0156b | 0.0226 ± 0.0053b | |
Marvinbryantia | 0.0137 ± 0.0043b | 0.0159 ± 0.0045b | 0.0203 ± 0.0115b | 0.0583 ± 0.0151ab | 0.0917 ± 0.0132a | 0.0341 ± 0.0082ab | |
[Eubacterium] coprostanoligenes group | 0.0391 ± 0.0103ab | 0.0086 ± 0.0053b | 0.0453 ± 0.0120a | 0.0212 ± 0.0041ab | 0.0252 ± 0.0049ab | 0.0369 ± 0.0108ab | |
艾克曼菌属 Akkermansia | 0.0142 ± 0.0042abc | 0.0090 ± 0.0051bc | 0.0079 ± 0.0019abc | 0.0658 ± 0.0274a | 0.0474 ± 0.0126ab | 0.0048 ± 0.0012c | |
瘤胃球菌属1 Ruminococcus 1 | 0.0321 ± 0.0133ab | 0.0191 ± 0.0073ab | 0.0430 ± 0.0135a | 0.0096 ±0.0052ab | 0.0027 ± 0.0006b | 0.0321 ± 0.0123a | |
脱硫弧菌属 Desulfovibrio | 0.0037 ± 0.0016b | 0.0036 ± 0.0010ab | 0.0054 ± 0.0024ab | 0.0105 ±0.0014a | 0.0101 ± 0.0027ab | 0.0053 ± 0.0011ab |
Table 2 Comparison of relative abundance of dominant microbiota of Daurian ground squirrel at phylum, family and genus levels
类群 Taxa | 起始育肥期组IF | 快速育肥期组RF | 育肥完成期组FF | 冬眠早期组EH | 冬眠晚期组LH | 出眠期组 A | |
---|---|---|---|---|---|---|---|
门Phylum | 厚壁菌门 Firmicutes | 0.7794 ± 0.0236a | 0.7448 ± 0.0291ab | 0.7629 ± 0.0180ab | 0.5783 ± 0.0347b | 0.7519 ± 0.0287a | 0.8225 ± 0.0232a |
拟杆菌门 Bacteroidetes | 0.1863 ± 0.0242b | 0.2207 ± 0.0289ab | 0.2049 ± 0.0167b | 0.3357 ± 0.0255a | 0.1810 ± 0.0300b | 0.1512 ± 0.0254b | |
疣微菌门 Verrucomicrobia | 0.0142 ± 0.0042abc | 0.0090 ± 0.0051bc | 0.0079 ± 0.0019abc | 0.0658 ± 0.0274a | 0.0474 ± 0.0126ab | 0.0048 ± 0.0012c | |
Epsilonbacteraeota | 0.0000 ± 0.0000ab | 0.0001 ± 0.0001a | 0.0004 ± 0.0003ab | 0.0001 ± 0.0000ab | 0.0000 ± 0.0000b | 0.0000 ± 0.0000ab | |
科Family | 瘤胃菌科 Ruminococcaceae | 0.2395 ± 0.0276ab | 0.1799 ± 0.0217ab | 0.3185 ± 0.0303a | 0.1711 ± 0.0209b | 0.1982 ± 0.0312ab | 0.2261 ± 0.0263ab |
乳杆菌科 Lactobacillaceae | 0.1923 ± 0.0686a | 0.1052 ± 0.0405a | 0.0283 ± 0.0121ab | 0.0009 ± 0.0003b | 0.0009 ± 0.0003b | 0.0471 ± 0.0277ab | |
拟杆菌科 Bacteroidaceae | 0.0361 ± 0.0110b | 0.0544 ± 0.0133ab | 0.0477 ± 0.0112ab | 0.1126 ± 0.0144a | 0.0395 ± 0.0156b | 0.0226 ± 0.0053b | |
艾克曼氏菌科 Akkermansiaceae | 0.0142 ± 0.0042abc | 0.0090 ± 0.0051bc | 0.0079 ± 0.0019abc | 0.0658 ± 0.0274a | 0.0474 ± 0.0126ab | 0.0048 ± 0.0012c | |
Family | 0.0242 ± 0.0036ab | 0.0232 ± 0.0019ab | 0.0317 ± 0.0038a | 0.0165 ± 0.0033b | 0.0282 ± 0.0046ab | 0.0271 ± 0.0066ab | |
消化球菌科 Peptococcaceae | 0.0047 ± 0.0015b | 0.0019 ± 0.0004b | 0.0052 ± 0.0013ab | 0.0126 ± 0.0040ab | 0.0187 ± 0.0031a | 0.0111 ± 0.0028ab | |
韦荣球菌科 Erysipelotrichaceae | 0.0035 ± 0.0009b | 0.0049 ± 0.0013ab | 0.0054 ± 0.0018ab | 0.0093 ± 0.0017ab | 0.0098 ± 0.0009a | 0.0198 ± 0.0072a | |
氨基酸球菌科 Acidaminococcaceae | 0.0014 ± 0.0013ab | 0.0205 ± 0.0072a | 0.0078 ± 0.0049ab | 0.0028 ± 0.0028ab | 0.0007 ± 0.0007b | 0.0024 ± 0.0017ab | |
属Genus | 乳杆菌属 Lactobacillus | 0.1923 ± 0.0686a | 0.1052 ± 0.0405a | 0.0283 ± 0.0121ab | 0.0009 ± 0.0003b | 0.0009 ± 0.0003b | 0.0471 ± 0.0277ab |
拟杆菌属 Bacteroides | 0.0361 ± 0.0110b | 0.0544 ± 0.0133ab | 0.0477 ± 0.0112ab | 0.1126 ± 0.0144a | 0.0395 ± 0.0156b | 0.0226 ± 0.0053b | |
Marvinbryantia | 0.0137 ± 0.0043b | 0.0159 ± 0.0045b | 0.0203 ± 0.0115b | 0.0583 ± 0.0151ab | 0.0917 ± 0.0132a | 0.0341 ± 0.0082ab | |
[Eubacterium] coprostanoligenes group | 0.0391 ± 0.0103ab | 0.0086 ± 0.0053b | 0.0453 ± 0.0120a | 0.0212 ± 0.0041ab | 0.0252 ± 0.0049ab | 0.0369 ± 0.0108ab | |
艾克曼菌属 Akkermansia | 0.0142 ± 0.0042abc | 0.0090 ± 0.0051bc | 0.0079 ± 0.0019abc | 0.0658 ± 0.0274a | 0.0474 ± 0.0126ab | 0.0048 ± 0.0012c | |
瘤胃球菌属1 Ruminococcus 1 | 0.0321 ± 0.0133ab | 0.0191 ± 0.0073ab | 0.0430 ± 0.0135a | 0.0096 ±0.0052ab | 0.0027 ± 0.0006b | 0.0321 ± 0.0123a | |
脱硫弧菌属 Desulfovibrio | 0.0037 ± 0.0016b | 0.0036 ± 0.0010ab | 0.0054 ± 0.0024ab | 0.0105 ±0.0014a | 0.0101 ± 0.0027ab | 0.0053 ± 0.0011ab |
Fig. 4 LEfSe analysis of the function of significant enrichment of cecal microbiota of Daurian ground squirrel at three KEGG levels. LDA > 2 is considered to be different. IF: Initial fattening group; RF: Rapid fattening group; FF: Finished fattening group; EH: Early hibernation group; LH: Late hibernation group
Fig. 5 RDA analysis of physiological characteristics of Daurian ground squirrel in different periods and the composition (A) and function (B) of cecal microbiota. The red arrow rays represent the physiological characteristics of Daurian ground squirrel in different periods. The blue arrow rays represent the composition and function of cecal microbiota. Dots of different colors represent samples of different groups. The relationship between rays is indicated by the included angle, with acute angle representing positive correlation and obtuse angle representing negative correlation
Anwar H, Iftikhar A, Muzaffar H, Almatroudi A, Allemailem K S, Navaid S, Saleem S, Khurshid M. 2021. Biodiversity of gut microbiota: impact of various host and environmental factors. Biomed Research International, 2021 (6): 5575245. | |
Bäckhed F, Ley R E, Sonnenburg J L, Peterson D A, Gordon J I. 2005. Host‑bacterial mutualism in the human intestine. Science, 307 (5717): 1915-1920. | |
Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7 (5): 335-336. | |
Carey H V, Assadi‑Porter F M. 2017. The hibernator microbiome: host‑nacterial interactions in an extreme nutritional symbiosis. Annual Review of Nutrition, 37 (1): 477-500. | |
Carey H V, Walters W A, Knight R. 2013. Seasonal restructuring of the ground squirrel gut microbiota over the annual hibernation cycle. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 304 (1): R33-R42. | |
Chao A, Ma M C, Yang M C K. 1993. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika, 80 (1): 193-201. | |
Chao A. 1984. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11: 265-270. | |
Costello E K, Gordon J I, Secor S M, Knight R. 2010. Postprandial remodeling of the gut microbiota in Burmese pythons. The ISME Journal, 4 (11): 1375-1385. | |
Daniel H, Gholami A M, Berry D, Desmarchelier C, Hahne H, Loh G, Mondot S, Lepage P, Rothballer M, Walker A, Böhm C, Wenning M, Wagner M, Blaut M, Schmitt‑Kopplin P, Kuster B, Haller D, Clavel T. 2014. High‑fat diet alters gut microbiota physiology in mice. The ISME Journal, 8 (2): 295-308. | |
Derrien M, Vaughan E E, Plugge C M, de Vos W M. 2004. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 54 (5): 1469-1476. | |
Dill‑McFarland K A, Neil K L, Zeng A, Sprenger R J, Kurtz C C, Suen G, Carey H V. 2014. Hibernation alters the diversity and composition of mucosa‑associated bacteria while enhancing antimicrobial defence in the gut of 13‑lined ground squirrels. Molecular Ecology, 23 (18): 4658-4669. | |
Dominguez‑Bello M G, Godoy‑Vitorino F, Knight R, Blaser M J. 2019. Role of the microbiome in human development. Gut, 68 (6): 1108-1114. | |
Earley H, Lennon G, Balfe A, Kilcoyne M, Clyne M, Joshi L, Carrington S, Martin S T, Coffey J C, Winter D C, O’Connell P R. 2015. A preliminary study examining the binding capacity of Akkermansia muciniphila and Desulfovibrio spp., to colonic mucin in health and ulcerative colitis. PLoS ONE, 10 (10): e0135280. | |
Feng J, Shen Z M, Wang S C, Lin J X, Bo X, Xie J Y. 2018. Comparative analysis of intestinal flora of Microtus fortis living under laboratory feeding and wild survival conditions. Acta Laboratorium Animalis Scientia Sinica, 26 (2): 188-194. (in Chinese) | |
Flint H J, Scott K P, Duncan S H, Louis P, Forano E. 2012. Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 3 (4): 289-306. | |
Geerlings S Y, Kostopoulos I, de Vos W M, Belzer C. 2018. Akkermansia muciniphila in the human gastrointestinal tract: when, where, and how? Microorganisms, 6 (3): 75. | |
Guan S J. 2010. The study on the relationship between entering hibernation and the energy accumulation of Daurian ground squirrel (Spermophilus dauricus). Master thesis. Shenyang: Shenyang Normal University. (in Chinese) | |
Hanning I, Diaz‑Sanchez S. 2015. The functionality of the gastrointestinal microbiome in non‑human animals. Microbiome, 3: 51. | |
Kashyap P C, Marcobal A, Ursell L K, Larauche M, Duboc H, Earle K A, Sonnenburg E D, Ferreyra J A, Higginbottom S K, Million M, Tache Y, Pasricha P J, Knight R, Farrugia G, Sonnenburg J L. 2013. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice. Gastroenterology, 144 (5): 967-977. | |
Kohl K D, Amaya J, Passement C A, Dearing M D, McCue M D. 2014. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiology Ecology, 90 (3): 883-894. | |
Koropatkin N M, Cameron E A, Martens E C. 2012. How glycan metabolism shapes the human gut microbiota. Nature Reviews Microbiology, 10 (5): 323-335. | |
Langille M G, Zaneveld J, Caporaso J G, McDonald D, Knights D, Reyes J A, Clemente J C, Burkepile D E, Vega Thurber R L, Knight R, Beiko R G, Huttenhower C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31 (9): 814-821. | |
Lee T N, Buck C L, Barnes B M, O’Brien D M. 2012. A test of alternative models for increased tissue nitrogen isotope ratios during fasting in hibernating arctic ground squirrels. Journal of Experimental Biology, 215 (19): 3354-3361. | |
Ley R E, Hamady M, Lozupone C, Turnbaugh P J, Ramey R R, Bircher J S, Schlegel M L, Tucker T A, Schrenzel M D, Knight R, Gordon J I. 2008. Evolution of mammals and their gut microbes. Science, 320 (5883): 1647-1651. | |
Ley R E, Peterson D A, Gordon J I. 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 124 (4): 837-848. | |
Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71 (12): 8228-8235. | |
Lozupone C, Lladser M E, Knights D, Stombaugh J, Knight R. 2011. UniFrac: an effective distance metric for microbial community comparison. The ISME Journal, 5 (2): 169-172. | |
Lv Z, Song S Y, Yang M, Peng X. 2014. Body temperature, metabolic rate and energetic characteristics of Daurian ground squirrels (Spermophilus dauricus) during preparation of hibernation. Acta Theriologica Sinica, 34 (4): 348-355. (in Chinese) | |
Ma X, Sun P, He L P, Han P F, Wang J J, Qiao S Y, Li D F. 2010. Development of monoclonal antibodies and a competitive ELISA detection method for glycinin, an allergen in soybean. Food Chemistry, 121 (2): 546-551. | |
Magoč T, Salzberg S L. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27 (21): 2957-2963. | |
Makki K, Deehan E C, Walter J, Bäckhed F. 2018. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe, 23 (6): 705-715. | |
Mao Q Y, Sun Y, Wang C. 2018. Diversity analysis of luminal and mucosa‑associated microbial communities in obese mice. Chinese Journal of Internal Medicine, 75 (10): 743-748. (in Chinese) | |
Men L Y, Liu S, Song S Y, Liu X Y, Peng X, Lv Z, Cai L N, Yang M. 2015. Differential gene expression associated with glycometabolism in the white adipose tissue during fattening and hibernation in Daurian ground squirrel (Spermophilus dauricus). Acta Theriologica Sinica, 35 (4): 422-430. (in Chinese) | |
Nicholls P, Marshall D C, Cooper C E, Wilson M T. 2013. Sulfide inhibition of and metabolism by cytochrome c oxidase. Biochemical Society Transactions, 41 (5): 1312-1316. | |
Paulson J N, Stine O C, Bravo H C, Pop M. 2013. Differential abundance analysis for microbial marker‑gene surveys. Nature Methods, 10 (12): 1200-1202. | |
Pi Y, Gao K, Zhu W Y. 2017. Advances in host‑microbe metabolic axis. Acta Microbiologica Sinica, 57 (2): 161-169. (in Chinese) | |
Rastelli M, Cani P D, Knauf C. 2019. The gut microbiome influences host endocrine functions. Endocrine Reviews, 40 (5): 1271-1284. | |
Regan M D, Chiang E, Liu Y, Tonelli M, Verdoorn K M, Gugel S R, Suen G, Carey H V, Assadi‑Porter F M. 2022. Nitrogen recycling via gut symbionts increases in ground squirrels over the hibernation season. Science, 375 (6579): 460-463. | |
Ren Y, Song S Y, Liu X Y, Yang M. 2022. Phenotypic changes in the metabolic profile and adiponectin activity during seasonal fattening and hibernation in female Daurian ground squirrels (Spermophilus dauricus). Integrative Zoology, 17 (2): 297-310. | |
Revsbech I G, Shen X, Chakravarti R, Jensen F B, Thiel B, Evans A L, Kindberg J, Fröbert O, Stuehr D J, Kevil C G, Fago A. 2014. Hydrogen sulfide and nitric oxide metabolites in the blood of free‑ranging brown bears and their potential roles in hibernation. Free Radical Biology and Medicine, 73: 349-357. | |
Rice S A, Ten Have G A M, Reisz J A, Gehrke S, Stefanoni D, Frare C, Barati Z, Coker R H, D’Alessandro A, Deutz N E P, Drew K L. 2020. Nitrogen recycling buffers against ammonia toxicity from skeletal muscle breakdown in hibernating arctic ground squirrels. Nature Metabolism, 2 (12): 1459-1471. | |
Rinninella E, Cintoni M, Raoul P, Ianiro G, Laterza L, Lopetuso L R, Ponziani F R, Gasbarrini A, Mele M C. 2020. Gut microbiota during dietary restrictions: new insights in non‑communicable diseases. Microorganisms, 8 (8): 1140. | |
Schloss P D, Westcott S L, Ryabin T, Hall J R, Hartmann M, Hollister E B, Lesniewski R A, Oakley B B, Parks D H, Robinson C J, Sahl J W, Stres B, Thallinger G G, Van Horn D J, Weber C F. 2009.Introducing mothur: open‑source, platform‑independent, community‐supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75 (23): 7537-7541. | |
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett W S, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biology, 12 (6): R60. | |
Shannon C E. 1948. A mathematical theory of communication. Bell System Technical Journal, 27 (4): 623-656. | |
Simpson E H. 1949. Measurement of diversity. Nature, 163 (4148): 688-688. | |
Singh R K, Chang H W, Yan D, Lee K M, Ucmak D, Wong K, Abrouk M, Farahnik B, Nakamura M, Zhu T H, Bhutani T, Liao W. 2017. Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 15 (1): 73. | |
Sivaprakasam S, Bhutia Y D, Yang S, Ganapathy V. 2017. Short-chain fatty acid transporters: role in Colonic Homeostasis. Comprehensive Physiology, 8 (1): 299-314. | |
Sommer F, Ståhlman M, Ilkayeva O, Arnemo J M, Kindberg J, Josefsson J, Newgard C B, Fröbert O, Bäckhed F. 2016. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos . Cell Reports, 14 (7): 1655-1661. | |
Sonoyama K, Fujiwara R, Takemura N, Ogasawara T, Watanabe J, Ito H, Morita T. 2009. Response of gut microbiota to fasting and hibernation in Syrian hamsters. Applied and Environmental Microbiology, 75 (20): 6451-6456. | |
Stevenson T J, Duddleston K N, Buck C L. 2014. Effects of season and host physiological state on the diversity, density, and activity of the Arctic ground squirrel cecal microbiota. Applied and Environmental Microbiology, 80 (18): 5611-5622. | |
Van den Abbeele P, Van de Wiele T, Verstraete W, Possemiers S. 2011. The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept. FEMS Microbiology Ecology, 35 (4): 681-704. | |
Xiao G H, Liu S, Xiao Y H, Zhu Y, Zhao H B, Li A Q, Li Z L, Feng J. 2019. Seasonal changes in gut microbiota diversity and composition in the greater horseshoe bat. Frontiers in Microbiology, 10: 2247. | |
Xing X, Tang G B, Sun M Y, Yang M, Wang D H. 2015. The roles of leptin on energy balance and thermoregulation in post-fattening Daurian ground squirrels. Acta Theriologica Sinica, 35 (4): 379-388. (in Chinese) | |
Xing X, Yang M, Wang D H. 2015. The expression of leptin, hypothalamic neuropeptides and UCP1 before, during and after fattening in the Daurian ground squirrel (Spermophilus dauricus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 184 (2015): 105-112. | |
Yang M, Xing X, Guan S J, Zhao Y, Wang Z Y, Wang D H. 2011. Hibernation patterns and changes of body temperature in Daurian ground squirrels (Spermophilus dauricus) during hibernation. Acta Theriologica Sinica, 31 (4): 387-395. (in Chinese) | |
Yang X W, Peng C C, Guo Q Y, Ran J C, Wang Y Y, Zhang M M, Hu C S, Li S Z, Su H J. 2021. Diversity and functional characteristics of intestinal microflora of free‑living wild boars in the Miaoling Mountain area in Guizhou Province, China. Acta Theriologica Sinica, 41 (4): 365-376. (in Chinese) | |
Zhao G J, Feng X L, Zhu J B, Zheng C L, Jie H, Zeng D J, Zhang C L, Qi W H. 2019. Comparative analysis of fecal microbiota of captive musk deer in juvenile and adult. Acta Theriologica Sinica, 39 (3): 266-275. (in Chinese) | |
Zhou D, Pan Q, Xin F Z, Zhang R N, He C X, Chen G Y, Liu C, Chen Y W, Fan J G. 2017. Sodium butyrate attenuates high‑fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World Journal of Gastroenterology, 23 (1): 60-75. | |
Zhu L F, Wu Q, Dai J Y, Zhang S N, Wei F W. 2011. Evidence of cellulose metabolism by the giant panda gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 108 (43): 17714-17719. | |
门丽媛, 刘帅, 宋士一, 刘新宇, 彭霞, 吕铮, 蔡鲁纳, 杨明. 2015. 达乌尔黄鼠育肥过程和冬眠期白色脂肪组织糖代谢相关基因的差异表达. 兽类学报, 35 (4): 422-430. | |
毛倩云, 孙赟, 王琛. 2018. 肥胖小鼠肠内容物与肠道黏膜的菌群多样性分析. 中华内科杂志, 75 (10): 743-748. | |
冯洁, 沈志敏, 王胜昌, 林金杏, 柏熊, 谢建云. 2018. 实验室饲养和野外生存条件下东方田鼠肠道菌群的多样性. 中国实验动物学报, 26 (2): 188-194. | |
皮宇, 高侃, 朱伟云. 2017. 动物宿主:肠道微生物代谢轴研究进展. 微生物学报, 57 (2): 161-169. | |
邢昕, 汤刚彬, 孙明月, 杨明, 王德华. 2015. 瘦素在育肥后达乌尔黄鼠能量平衡及体温调节中的作用. 兽类学报, 35 (4): 379-388. | |
吕铮, 宋士一, 杨明, 彭霞. 2014. 达乌尔黄鼠入眠准备期的体温、代谢率及能量特征. 兽类学报, 34 (4): 348-355. | |
杨明, 邢昕, 管淑君, 赵岩, 王子英, 王德华. 2011. 达乌尔黄鼠冬眠期间体温的变化和冬眠模式. 兽类学报, 31 (4): 387-395. | |
杨雄威, 彭彩淳, 郭群毅, 冉景丞, 王野影, 张明明, 胡灿实, 李仕泽, 粟海军. 2021. 贵州苗岭地区野猪肠道菌群结构与功能分析. 兽类学报, 41 (4): 365-376. | |
赵贵军, 封孝兰, 朱吉彬, 郑程莉, 竭航, 曾德军, 张承露, 戚文华. 2019. 成年与未成年圈养林麝粪便菌群多样性的比较. 兽类学报, 39 (3): 266-275. | |
管淑君. 2010. 达乌尔黄鼠 (Spermophilus dauricus) 入眠与能量积累关系的研究. 沈阳: 沈阳师范大学硕士学位论文. |
[1] | ZHANG Zeming, YAO Hongyu, WU Nan, ZHAO Lingling, GU Yiru, WANG Yu, WU Hong, ZHAO Dapeng. Comparison of intestinal microbiota of golden-headed lion tamarins, golden-handed tamarins and cotton-headed tamarins under the same captive environment [J]. ACTA THERIOLOGICA SINICA, 2023, 43(5): 580-592. |
[2] | SHANG Zhengwen, YANG Ming, WANG Dehua, XING Xin. The roles of brown adipose tissue in thermoregulatory mechanisms of hibernators [J]. ACTA THERIOLOGICA SINICA, 2023, 43(5): 608-619. |
[3] | Feng JIANG, Pengfei SONG, Jingjie ZHANG, Hongmei GAO, Haijing WANG, Zhenyuan CAI, Daoxin LIU, Tongzuo ZHANG. Comparative analysis of gut microbial composition and functions of forest musk deer in different breeding centres [J]. ACTA THERIOLOGICA SINICA, 2023, 43(2): 129-140. |
[4] | Xiujing ZHANG, Heng WANG, Qiumei ZHONG, Chenxi YANG, Jianli WANG. The variations of nephrons and relevant function factors between hibernating and non-hibernating Daurian ground squirrels [J]. ACTA THERIOLOGICA SINICA, 2022, 42(6): 677-686. |
[5] | WANG Heng, WANG Jianli, YANG Chenxi, HE Yating. Histological structure of the vomeronasal organ and accessory olfactory bulb and the seasonal changes of olfactory bulb c-Fos expression in Spermophilus dauricus [J]. ACTA THERIOLOGICA SINICA, 2021, 41(6): 685-694. |
[6] | FAN Chao, ZHANG Liangzhi, FU Haibo, LIU Chuanfa, LI Wenjing, ZHANG He, TANG Xianjiang, CHENG Qi, SHEN Wenjuan, ZHANG Yanming. Seasonality of abundant and rare taxa in gut microbiota of plateau pikas [J]. ACTA THERIOLOGICA SINICA, 2021, 41(6): 617-630. |
[7] | WANG Dehua, ZHAO Zhijun, ZHANG Xueying, ZHANG Zhiqiang, XU Deli, XING Xin, YANG Shengmei, WANG Zhengkun, GAO Yunfang, YANG Ming. Research advances and prespectives in mammal physiological ecology in China [J]. ACTA THERIOLOGICA SINICA, 2021, 41(5): 537-555. |
[8] | WEI Fuwen, HUANG Guangping, FAN Huizhong, HU Yibo. Research advances and perspectives of conservation genomics and meta-genomics of threatened mammals in China [J]. ACTA THERIOLOGICA SINICA, 2021, 41(5): 581-590. |
[9] | YANG Xiongwei, PENG Caichun, GUO Qunyi, RAN Jingcheng, WANG Yeying, ZHANG Mingming, HU Canshi, LI Shize, SU Haijun. Diversity and functional characteristics of intestinal microflora of free-living wild boars in the Miaoling Mountain area in Guizhou Province, China [J]. ACTA THERIOLOGICA SINICA, 2021, 41(4): 365-376. |
[10] | ZHANG Yongjun, HE Yuchao, ZHAO Juanjun, CHEN Yao, LI Yanpeng, HUANG Zhipang, CUI Liangwei, XIAO Wen. Activity patterns of Asiatic black bear(Ursus thibetanus) on the Mt.Lasha Yunling Nature Reserve [J]. ACTA Theriologica Sinica, 2021, 41(2): 136-143. |
[11] | XING Xin, TANG Gangbin, SUN Mingyue, YANG Ming, WANG Dehua. The roles of leptin on energy balance and thermoregulation in post-fattening Daurian ground squirrels [J]. ACTA THERIOLOGICA SINICA, 2015, 35(4): 379-388. |
[12] | MEN Liyuan, SONG Shiyi, LIU Xinyu, PENG Xia, LV Zheng, LIU Shuai, CAI Luna, YANG Ming. Differential gene expression associated with glycometabolism in the white adipose tissue during fattening and hibernation in Daurian ground squirrel (Spermophilus dauricus) [J]. ACTA THERIOLOGICA SINICA, 2015, 35(4): 422-430. |
[13] | LV Zheng, CAI Luna, SONG Shiyi, LIU Xinyu, PENG Xia, YANG Ming. Hibernation and energy consumption of Daurian ground squirrels (Spermophilus dauricus) under light-dark cycle conditions [J]. ACTA THERIOLOGICA SINICA, 2015, 35(4): 398-404. |
[14] | LV Zheng, SONG Shiyi, YANG Ming, PENG Xia. Body temperature,metabolic rate and energetic characteristics of daurian ground squirrels (Spermophilus dauricus)during preparation of hibernation [J]. ACTA THERIOLOGICA SINICA, 2014, 34(4): 348-. |
[15] | SUN Xiaoyong,GAO Yunfang ,WANG Qi ,JIANG Shanfeng ,GUO Shupan ,LIU Kun. The artificial feeding,breeding and research on hibernation bouts of the Daurian ground squirrel (Spermophilus dauricus) [J]. , 2012, 32(4): 356-361. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||