兽类学报 ›› 2023, Vol. 43 ›› Issue (3): 280-292.DOI: 10.16829/j.slxb.150710
李丛蕾1, 田书荣1(), 宋玉成2, 张鸿2, 高大立2, 杨道德3, 桂小杰4()
收稿日期:
2022-06-28
接受日期:
2023-03-06
出版日期:
2023-05-31
发布日期:
2023-05-18
通讯作者:
田书荣,桂小杰
作者简介:
李丛蕾 (1994- ), 女,硕士研究生,主要从事湿地生物多样性保护研究.
基金资助:
Conglei LI1, Shurong TIAN1(), Yucheng SONG2, Hong ZHANG2, Dali GAO2, Daode YANG3, Xiaojie GUI4()
Received:
2022-06-28
Accepted:
2023-03-06
Online:
2023-05-31
Published:
2023-05-18
Contact:
Shurong TIAN,Xiaojie GUI
摘要:
种群生存力分析是通过对种群统计随机性、环境随机性、自然灾害、生境的空间结构以及各种管理措施等因素分析、估计濒危物种种群大小和灭绝风险的方法。洞庭湖麋鹿是一个完全自然野化的野生种群,受洪灾制约,面临着岛屿化和近交衰退的威胁,因此,通过种群监测和生存力分析制定科学有效的保护行动计划十分必要。本研究结果显示,目前湖南洞庭湖分布有3个麋鹿亚群,种群数量为210头左右。根据种群2006—2020年监测数据,参照种群现状、配偶体制、自然灾害、环境容纳量和死亡率等种群参数,利用VORTEX模型 (10.5.5.0) 对麋鹿种群100年内的数量动态进行模拟分析,结果表明:在理想状态和环境容纳量为1 000头的情形下,种群在100年间灭绝概率为0,内禀增长率r为0.0991 ± 0.0800,周限增长率λ为1.1041 ± 1.1900,净增长率R0为2.006 2,雌性平均世代更替时间T为7.03年,雄性平均世代更替时间T为8.65年;随着时间推移,近交系数增加8.08%,种群基因期望杂合度和观察杂合度分别下降6.57%和8.30%;敏感度分析发现,洪水灾害是影响洞庭湖麋鹿种群增长的主要因子,并导致生育率下降和幼鹿死亡率增加,种群灭绝概率与灾害频次及影响程度呈正相关。在对洞庭湖麋鹿种群生存力分析研究的基础上,提出了保护和管理策略的建议。
中图分类号:
李丛蕾, 田书荣, 宋玉成, 张鸿, 高大立, 杨道德, 桂小杰. 湖南洞庭湖麋鹿种群生存力分析[J]. 兽类学报, 2023, 43(3): 280-292.
Conglei LI, Shurong TIAN, Yucheng SONG, Hong ZHANG, Dali GAO, Daode YANG, Xiaojie GUI. Population viability analysis of Père David’s deer (Elaphurus davidianus) in Dongting Lake, Hunan Province[J]. ACTA THERIOLOGICA SINICA, 2023, 43(3): 280-292.
年龄段 (岁) Age period (year) | 死亡率Mortality (mean ± SD) (%) | |
---|---|---|
雌性Female | 雄性Male | |
0 ~ 1 | 21.57 ± 7.19 | 21.57 ± 7.19 |
1 ~ 2 | 0.00 ± 0.00 | 0.00 ± 0.00 |
2 ~ 3 | 5.60 ± 1.86 | 5.60 ± 1.86 |
3 ~ 4 | 2.70 ± 0.90 | 2.70 ± 0.90 |
4 ~ 5 | 3.00 ± 1.00 | 3.00 ± 1.00 |
成体Adult | 1.21 ± 0.40 | 3.29 ± 1.09 |
表1 洞庭湖麋鹿各年龄段和性别死亡率
Table 1 The mortality of Elaphurus davidianus population specific by age and sex in Dongting Lake
年龄段 (岁) Age period (year) | 死亡率Mortality (mean ± SD) (%) | |
---|---|---|
雌性Female | 雄性Male | |
0 ~ 1 | 21.57 ± 7.19 | 21.57 ± 7.19 |
1 ~ 2 | 0.00 ± 0.00 | 0.00 ± 0.00 |
2 ~ 3 | 5.60 ± 1.86 | 5.60 ± 1.86 |
3 ~ 4 | 2.70 ± 0.90 | 2.70 ± 0.90 |
4 ~ 5 | 3.00 ± 1.00 | 3.00 ± 1.00 |
成体Adult | 1.21 ± 0.40 | 3.29 ± 1.09 |
参数类别 Parameter types | 模型参数 Parameter of model | 参数值 Values | 数据来源 Data resources* |
---|---|---|---|
情景设定 Scenario setting | 模拟次数 Number of iterations | 100 | 本研究 This study |
模拟时间长度 Number of years | 100 | 本研究This study | |
种群个数 Number of populations | 1 | 本研究This study | |
物种描述 Species description | 是否近交衰退 Inbreeding depression type (Yes or No) | Yes | Ralls et al., 1988 |
致死当量Lethal equivalents | 1.26 | Ralls et al.,1988 | |
隐性致死比例 Percent due to recessive lethals | 50% | 本研究This study | |
繁殖系统 Reproductive system | 单配或多配Monogamous (M) or polygamous (P) | P | 蒋志刚等,2006 |
雌性繁殖时间 Minimum famale breeding age | 3 | 丁玉华,2017 | |
雄性繁殖时间 Minimum male breeding age | 5 | 丁玉华,2017 | |
最大繁殖龄Maximum breeding age | 13/14 | 丁玉华,2017 | |
生育率Percentage of female breeding | 28.48% | 本研究This study | |
个体最大繁殖量 Maximum number of progeny per year | 1 | 俞晓鹏等,2020 | |
性别比例 (雄性 / 总数) Sex ratio at birth [male / (male + female)] | 50% | 本研究This study | |
死亡率 Mortality rates | 0 ~ 1龄死亡率Mortality from age 0 to 1 | 21.57% | 本研究This study |
成体雌性死亡率Mortality of adult female | 1.21% | 本研究This study | |
成体雄性死亡率Mortality of adult male | 3.29% | 本研究This study | |
其他参数 Other parament | 灾害性事件数量 Number of catastrophe | 1 | 本研究This study |
灾害对繁殖率影响程度 Efecting severity of reproductive due to catastrophe | 8% (输入值0.92) | 本研究This study | |
灾害对存活率影响程度 Efecting severity of survival due to catastrophe | 3% (输入值0.97) | 本研究This study | |
初始种群大小 Initail population size | 27 | 本研究This study | |
环境容纳量Carrying capacity | 1 000 | 本研究This study | |
是否捕获 Harvest (Yes or No) | No | — | |
是否补充 Supplementation (Yes or No) | Yes | — | |
* 研究种群缺乏该类型数据时的参考文献; /:本研究设定值 * Reference when data of study population shortage; /: Deflaut of this study |
表2 洞庭湖麋鹿种群生存力分析输入VORTEX模型主要参数及数值
Table 2 The input parameters and values used for PVA of Elaphurus davidianus in VORTEX model
参数类别 Parameter types | 模型参数 Parameter of model | 参数值 Values | 数据来源 Data resources* |
---|---|---|---|
情景设定 Scenario setting | 模拟次数 Number of iterations | 100 | 本研究 This study |
模拟时间长度 Number of years | 100 | 本研究This study | |
种群个数 Number of populations | 1 | 本研究This study | |
物种描述 Species description | 是否近交衰退 Inbreeding depression type (Yes or No) | Yes | Ralls et al., 1988 |
致死当量Lethal equivalents | 1.26 | Ralls et al.,1988 | |
隐性致死比例 Percent due to recessive lethals | 50% | 本研究This study | |
繁殖系统 Reproductive system | 单配或多配Monogamous (M) or polygamous (P) | P | 蒋志刚等,2006 |
雌性繁殖时间 Minimum famale breeding age | 3 | 丁玉华,2017 | |
雄性繁殖时间 Minimum male breeding age | 5 | 丁玉华,2017 | |
最大繁殖龄Maximum breeding age | 13/14 | 丁玉华,2017 | |
生育率Percentage of female breeding | 28.48% | 本研究This study | |
个体最大繁殖量 Maximum number of progeny per year | 1 | 俞晓鹏等,2020 | |
性别比例 (雄性 / 总数) Sex ratio at birth [male / (male + female)] | 50% | 本研究This study | |
死亡率 Mortality rates | 0 ~ 1龄死亡率Mortality from age 0 to 1 | 21.57% | 本研究This study |
成体雌性死亡率Mortality of adult female | 1.21% | 本研究This study | |
成体雄性死亡率Mortality of adult male | 3.29% | 本研究This study | |
其他参数 Other parament | 灾害性事件数量 Number of catastrophe | 1 | 本研究This study |
灾害对繁殖率影响程度 Efecting severity of reproductive due to catastrophe | 8% (输入值0.92) | 本研究This study | |
灾害对存活率影响程度 Efecting severity of survival due to catastrophe | 3% (输入值0.97) | 本研究This study | |
初始种群大小 Initail population size | 27 | 本研究This study | |
环境容纳量Carrying capacity | 1 000 | 本研究This study | |
是否捕获 Harvest (Yes or No) | No | — | |
是否补充 Supplementation (Yes or No) | Yes | — | |
* 研究种群缺乏该类型数据时的参考文献; /:本研究设定值 * Reference when data of study population shortage; /: Deflaut of this study |
年份 Year | 种群数量 Individuals | 雄性 Male | 雌性 Female | 幼体 Juvenile | 死亡数量Number of death | |||
---|---|---|---|---|---|---|---|---|
总数Total | 成体雄性 Adult male | 成体雌性 Adult female | 幼体Juvenile | |||||
2006 | 27 | — | — | — | — | — | — | — |
2007 | 30 | — | — | — | — | — | — | — |
2008 | 50 | — | — | — | — | — | — | — |
2009 | 60 | — | — | — | — | — | — | — |
2010 | 58 | 34 | 24 | 9 | — | — | — | — |
2011 | 61 | 33 | 28 | 8 | 1 | 1 | — | — |
2012 | 65 | 33 | 32 | 6 | 1 | — | — | — |
2013 | 79 | 39 | 40 | 8 | — | — | — | — |
2014 | 90 | 41 | 49 | 5 | — | — | — | — |
2015 | 113 | 52 | 61 | 10 | — | — | — | 1 |
2016 | 127 | 55 | 72 | 10 | 4 | 3 | — | 1 |
2017 | 146 | 65 | 81 | 5 | 5 | 2 | 1 | 2 |
2018 | 173 | 83 | 90 | 10 | 2 | 1 | 1 | — |
2019 | 198 | 103 | 95 | 12 | 5 | 2 | 1 | 2 |
2020 | 209 | 108 | 101 | 17 | 9 | 4 | 2 | 3 |
2021 | — | — | — | — | 4 | 3 | 1 | — |
平均Mean | 99.06 | 43.06 | 61.18 | 9.09 | 31 | 16 | 6 | 9 |
表3 洞庭湖麋鹿种群数据统计表
Table 3 The population trend of Elaphurus davidianus specific by years in Dongting Lake
年份 Year | 种群数量 Individuals | 雄性 Male | 雌性 Female | 幼体 Juvenile | 死亡数量Number of death | |||
---|---|---|---|---|---|---|---|---|
总数Total | 成体雄性 Adult male | 成体雌性 Adult female | 幼体Juvenile | |||||
2006 | 27 | — | — | — | — | — | — | — |
2007 | 30 | — | — | — | — | — | — | — |
2008 | 50 | — | — | — | — | — | — | — |
2009 | 60 | — | — | — | — | — | — | — |
2010 | 58 | 34 | 24 | 9 | — | — | — | — |
2011 | 61 | 33 | 28 | 8 | 1 | 1 | — | — |
2012 | 65 | 33 | 32 | 6 | 1 | — | — | — |
2013 | 79 | 39 | 40 | 8 | — | — | — | — |
2014 | 90 | 41 | 49 | 5 | — | — | — | — |
2015 | 113 | 52 | 61 | 10 | — | — | — | 1 |
2016 | 127 | 55 | 72 | 10 | 4 | 3 | — | 1 |
2017 | 146 | 65 | 81 | 5 | 5 | 2 | 1 | 2 |
2018 | 173 | 83 | 90 | 10 | 2 | 1 | 1 | — |
2019 | 198 | 103 | 95 | 12 | 5 | 2 | 1 | 2 |
2020 | 209 | 108 | 101 | 17 | 9 | 4 | 2 | 3 |
2021 | — | — | — | — | 4 | 3 | 1 | — |
平均Mean | 99.06 | 43.06 | 61.18 | 9.09 | 31 | 16 | 6 | 9 |
图1 麋鹿种群数量期望值与观测值比较及种群动态
Fig.1 The comparing of expected and observed population size and the general variation trend of Elaphurus davidianus population
情景描述 Scenario description | 基准参数值 Basic value | 测试参数值 Test value | 增长率 Growth rate | 种群数量 Population size | 基因多样性 Gene diversity | 敏感度分析指数 Sensitivity index, Sx |
---|---|---|---|---|---|---|
ST1致死当量增加10% +10% higher lethal equivalent | 1.26 | 1.36 | 0.093 2 | 996.41 | 0.921 5 | -0.264 7 |
ST2致死当量减少10% -10% lower lethal equivalent | 1.16 | 0.094 3 | 996.50 | 0.918 5 | 0.119 1 | |
ST3灾害频次增加10% +10% higher severity of catastrophe | 0.75 | 0.85 | 0.088 5 | 989.57 | 0.913 9 | -0.527 8 |
ST4灾害频次减少10% -10% lower severity of catastrophe | 0.65 | 0.099 1 | 998.05 | 0.923 4 | -0.307 2 | |
ST5灾害对存活率影响程度增加10% +10% higher severity of survival | 0.03 | 0.13 | -0.000 8 | 113.91 | 0.434 5 | -9.781 5 |
ST6灾害对存活影响程度减少10% -10% lower severity of survival | -0.07 | 0.143 9 | 997.66 | 0.943 2 | -4.962 1 | |
ST7生育率增加10% +10% higher female breeding rate | 0.284 8 | 0.384 8 | 0.140 4 | 1 001.11 | 0.937 8 | 1.352 2 |
ST8生育率减少10% -10% lower female breeding rate | 0.184 8 | 0.021 1 | 425.02 | 0.651 9 | 2.216 8 | |
ST9雄性参加繁殖率增加10% +10% higher male in breeding pool | 0.60 | 0.70 | 0.092 8 | 998.01 | 0.921 1 | -0.151 3 |
ST10雄性参加繁殖率减少10% -10% lower male in breeding pool | 0.50 | 0.094 0 | 997.53 | 0.918 5 | 0.075 6 | |
ST11幼体死亡率增加10% +10% higher fawn mortality | 0.215 7 | 0.315 7 | 0.073 5 | 986.10 | 0.901 5 | -0.491 7 |
ST12幼体死亡率减少10% -10% lower fawn mortality | 0.115 7 | 0.114 6 | 997.94 | 0.926 5 | 0.439 6 | |
ST13环境容纳量增加10% +10% higher carrying capacity | 1 000 | 1 100 | 0.093 1 | 1 094.16 | 0.922 0 | -0.220 6 |
ST14环境容纳量减少10% -10% lower carrying capacity | 900 | 0.093 3 | 897.15 | 0.920 6 | 0.199 6 |
表4 不同情形下的麋鹿种群生存力敏感度分析
Table 4 The sensitivity indices of population viability analysis based on the different parameters changes for Elaphurus davidianus
情景描述 Scenario description | 基准参数值 Basic value | 测试参数值 Test value | 增长率 Growth rate | 种群数量 Population size | 基因多样性 Gene diversity | 敏感度分析指数 Sensitivity index, Sx |
---|---|---|---|---|---|---|
ST1致死当量增加10% +10% higher lethal equivalent | 1.26 | 1.36 | 0.093 2 | 996.41 | 0.921 5 | -0.264 7 |
ST2致死当量减少10% -10% lower lethal equivalent | 1.16 | 0.094 3 | 996.50 | 0.918 5 | 0.119 1 | |
ST3灾害频次增加10% +10% higher severity of catastrophe | 0.75 | 0.85 | 0.088 5 | 989.57 | 0.913 9 | -0.527 8 |
ST4灾害频次减少10% -10% lower severity of catastrophe | 0.65 | 0.099 1 | 998.05 | 0.923 4 | -0.307 2 | |
ST5灾害对存活率影响程度增加10% +10% higher severity of survival | 0.03 | 0.13 | -0.000 8 | 113.91 | 0.434 5 | -9.781 5 |
ST6灾害对存活影响程度减少10% -10% lower severity of survival | -0.07 | 0.143 9 | 997.66 | 0.943 2 | -4.962 1 | |
ST7生育率增加10% +10% higher female breeding rate | 0.284 8 | 0.384 8 | 0.140 4 | 1 001.11 | 0.937 8 | 1.352 2 |
ST8生育率减少10% -10% lower female breeding rate | 0.184 8 | 0.021 1 | 425.02 | 0.651 9 | 2.216 8 | |
ST9雄性参加繁殖率增加10% +10% higher male in breeding pool | 0.60 | 0.70 | 0.092 8 | 998.01 | 0.921 1 | -0.151 3 |
ST10雄性参加繁殖率减少10% -10% lower male in breeding pool | 0.50 | 0.094 0 | 997.53 | 0.918 5 | 0.075 6 | |
ST11幼体死亡率增加10% +10% higher fawn mortality | 0.215 7 | 0.315 7 | 0.073 5 | 986.10 | 0.901 5 | -0.491 7 |
ST12幼体死亡率减少10% -10% lower fawn mortality | 0.115 7 | 0.114 6 | 997.94 | 0.926 5 | 0.439 6 | |
ST13环境容纳量增加10% +10% higher carrying capacity | 1 000 | 1 100 | 0.093 1 | 1 094.16 | 0.922 0 | -0.220 6 |
ST14环境容纳量减少10% -10% lower carrying capacity | 900 | 0.093 3 | 897.15 | 0.920 6 | 0.199 6 |
图2 不同情形下麋鹿种群大小、遗传多样性、存活概率变化趋势
Fig. 2 The general variation trend of population size, gene diversity and survive probability of Elaphurus davidianus specific by different scenarios
情形 Scenario | 初始种群N i Initial population | 种群数量 Poulation size (mean ± SD) | 种群存活率 Population survive probability | 种群增长率 Population growth rate(mean ± SD) | 基因多样性 Gene diversity (mean ± SD) | 等位基因数 Number of alleles (mean ± SD) |
---|---|---|---|---|---|---|
高强度灾害影响 Higher severity effecting | 27 | 71.36 ± 147.30 | 0.52 | -0.0048 ± 0.1551 | 0.3666 ± 0.3563 | 3.19 ± 3.79 |
37 | 132.54 ± 227.70 | 0.63 | -0.0015 ± 0.1405 | 0.4665 ± 0.3673 | 5.33 ± 5.54 | |
47 | 179.21 ± 210.97 | 0.79 | 0.0036 ± 0.1316 | 0.6380 ± 0.3328 | 8.36 ± 6.33 | |
57 | 165.67 ± 215.68 | 0.86 | 0.0009 ± 0.1302 | 0.6634 ± 0.3060 | 8.97 ± 6.58 | |
67 | 281.24 ± 305.19 | 0.91 | 0.0071 ± 0.1202 | 0.7673 ± 0.2493 | 12.71 ± 8.29 | |
77 | 301.47 ± 322.39 | 0.92 | 0.0057 ± 0.1193 | 0.7689 ± 0.2552 | 14.40 ± 9.90 | |
87 | 314.39 ± 289.13 | 0.95 | 0.0074 ± 0.1149 | 0.8166 ± 0.2079 | 15.63 ± 8.79 | |
97 | 359.94 ± 287.88 | 0.97 | 0.0086 ± 0.1120 | 0.8472 ± 0.1776 | 19.42 ± 11.04 | |
低生育率 Lower female breeding rate | 27 | 462.51 ± 397.51 | 0.79 | 0.0226 ± 0.1062 | 0.6418 ± 0.3471 | 9.00 ± 6.48 |
37 | 536.23 ± 393.64 | 0.86 | 0.0221 ± 0.0986 | 0.7288 ± 0.3039 | 12.04 ± 7.17 | |
47 | 645.72 ± 355.33 | 0.93 | 0.0263 ± 0.0927 | 0.8138 ± 0.2357 | 16.27 ± 8.44 | |
57 | 768.84 ± 307.04 | 0.97 | 0.0300 ± 0.0876 | 0.8724 ± 0.1634 | 21.52 ± 10.15 | |
低生育率 + 高幼鹿死亡率 Lower female breeding rate + higher fawn mortality | 27 | 110.84 ± 212.46 | 0.58 | -0.0016 ± 0.1241 | 0.4091 ± 0.3831 | 4.34 ± 4.91 |
37 | 109.73 ± 190.04 | 0.62 | -0.0038 ± 0.1191 | 0.4702 ± 0.3765 | 5.13 ± 5.29 | |
47 | 174.22 ± 234.35 | 0.80 | 0.0022 ± 0.1042 | 0.6221 ± 0.3331 | 8.56 ± 7.12 | |
57 | 249.10 ± 255.12 | 0.90 | 0.0073 ± 0.0964 | 0.7307 ± 0.2675 | 11.21 ± 7.37 | |
67 | 269.22 ± 253.82 | 0.93 | 0.0079 ± 0.0923 | 0.7838 ± 0.2270 | 13.18 ± 8.42 | |
77 | 307.20 ± 300.33 | 0.96 | 0.0077 ± 0.0896 | 0.8195 ± 0.1880 | 15.13 ± 9.41 |
表5 不同情形下和不同初始种群数量下麋鹿种群在未来100年的种群生存力分析
Table 5 The population viability analysis of Elaphurus davidianus with in 100 years based on different both of scenario and initial population size
情形 Scenario | 初始种群N i Initial population | 种群数量 Poulation size (mean ± SD) | 种群存活率 Population survive probability | 种群增长率 Population growth rate(mean ± SD) | 基因多样性 Gene diversity (mean ± SD) | 等位基因数 Number of alleles (mean ± SD) |
---|---|---|---|---|---|---|
高强度灾害影响 Higher severity effecting | 27 | 71.36 ± 147.30 | 0.52 | -0.0048 ± 0.1551 | 0.3666 ± 0.3563 | 3.19 ± 3.79 |
37 | 132.54 ± 227.70 | 0.63 | -0.0015 ± 0.1405 | 0.4665 ± 0.3673 | 5.33 ± 5.54 | |
47 | 179.21 ± 210.97 | 0.79 | 0.0036 ± 0.1316 | 0.6380 ± 0.3328 | 8.36 ± 6.33 | |
57 | 165.67 ± 215.68 | 0.86 | 0.0009 ± 0.1302 | 0.6634 ± 0.3060 | 8.97 ± 6.58 | |
67 | 281.24 ± 305.19 | 0.91 | 0.0071 ± 0.1202 | 0.7673 ± 0.2493 | 12.71 ± 8.29 | |
77 | 301.47 ± 322.39 | 0.92 | 0.0057 ± 0.1193 | 0.7689 ± 0.2552 | 14.40 ± 9.90 | |
87 | 314.39 ± 289.13 | 0.95 | 0.0074 ± 0.1149 | 0.8166 ± 0.2079 | 15.63 ± 8.79 | |
97 | 359.94 ± 287.88 | 0.97 | 0.0086 ± 0.1120 | 0.8472 ± 0.1776 | 19.42 ± 11.04 | |
低生育率 Lower female breeding rate | 27 | 462.51 ± 397.51 | 0.79 | 0.0226 ± 0.1062 | 0.6418 ± 0.3471 | 9.00 ± 6.48 |
37 | 536.23 ± 393.64 | 0.86 | 0.0221 ± 0.0986 | 0.7288 ± 0.3039 | 12.04 ± 7.17 | |
47 | 645.72 ± 355.33 | 0.93 | 0.0263 ± 0.0927 | 0.8138 ± 0.2357 | 16.27 ± 8.44 | |
57 | 768.84 ± 307.04 | 0.97 | 0.0300 ± 0.0876 | 0.8724 ± 0.1634 | 21.52 ± 10.15 | |
低生育率 + 高幼鹿死亡率 Lower female breeding rate + higher fawn mortality | 27 | 110.84 ± 212.46 | 0.58 | -0.0016 ± 0.1241 | 0.4091 ± 0.3831 | 4.34 ± 4.91 |
37 | 109.73 ± 190.04 | 0.62 | -0.0038 ± 0.1191 | 0.4702 ± 0.3765 | 5.13 ± 5.29 | |
47 | 174.22 ± 234.35 | 0.80 | 0.0022 ± 0.1042 | 0.6221 ± 0.3331 | 8.56 ± 7.12 | |
57 | 249.10 ± 255.12 | 0.90 | 0.0073 ± 0.0964 | 0.7307 ± 0.2675 | 11.21 ± 7.37 | |
67 | 269.22 ± 253.82 | 0.93 | 0.0079 ± 0.0923 | 0.7838 ± 0.2270 | 13.18 ± 8.42 | |
77 | 307.20 ± 300.33 | 0.96 | 0.0077 ± 0.0896 | 0.8195 ± 0.1880 | 15.13 ± 9.41 |
补充方式 Supplement regime | 性别比及数量 Sex ratio and numbers | 增长率 Growth rate (mean ± SD) | 种群数量 Population size (mean ± SD) | 基因多样性 Gene diversity (mean ± SD) | 等位基因数 Number of alleles (mean ± SD) |
---|---|---|---|---|---|
A | 雌∶雄 = 1∶1; 雌性30头,雄性30头 Females∶Males = 1∶1; females 30, males 30 | 0.0231 ± 0.1130 | 718.74 ± 259.23 | 0.9593 ± 0.0186 | 53.10 ± 16.94 |
B | 雌∶雄 = 2∶1;雌性20头/次,雄性10头/次 Females∶Males = 2∶1; females 20/t, males 10/t | 0.0217 ± 0.1112 | 702.81 ± 248.41 | 0.9632 ± 0.0139 | 59.34 ± 14.25 |
C | 雌∶雄 = 3∶2; 雌性12头/次,雄性8头/次 Females∶Males = 3∶2; females 12/t, males 8/t | 0.0237 ± 0.1078 | 740.19 ± 225.24 | 0.9689 ± 0.0095 | 66.08 ± 15.32 |
表6 严重灾害状态下麋鹿不同补充方式种群生存力分析
Table 6 The population viability analysis based on the different supplementation regime on Elaphurus davidianusunder the critical catastrophe status
补充方式 Supplement regime | 性别比及数量 Sex ratio and numbers | 增长率 Growth rate (mean ± SD) | 种群数量 Population size (mean ± SD) | 基因多样性 Gene diversity (mean ± SD) | 等位基因数 Number of alleles (mean ± SD) |
---|---|---|---|---|---|
A | 雌∶雄 = 1∶1; 雌性30头,雄性30头 Females∶Males = 1∶1; females 30, males 30 | 0.0231 ± 0.1130 | 718.74 ± 259.23 | 0.9593 ± 0.0186 | 53.10 ± 16.94 |
B | 雌∶雄 = 2∶1;雌性20头/次,雄性10头/次 Females∶Males = 2∶1; females 20/t, males 10/t | 0.0217 ± 0.1112 | 702.81 ± 248.41 | 0.9632 ± 0.0139 | 59.34 ± 14.25 |
C | 雌∶雄 = 3∶2; 雌性12头/次,雄性8头/次 Females∶Males = 3∶2; females 12/t, males 8/t | 0.0237 ± 0.1078 | 740.19 ± 225.24 | 0.9689 ± 0.0095 | 66.08 ± 15.32 |
图3 严重灾害状态下不同补充方式的麋鹿种群动态
Fig.3 The population dynamic based on the different supplementation regime on Elaphurus davidianus under the critical catastrophe status
Ba H X, Hu P F, Li C Y.2021. Progress on deer genome research.Hereditas (Beijing), 43 (4): 308-322. (in Chinese) | |
Bai J D, Zhang Y Y, Zhong Z Y, Cheng Z B, Cao M, Meng Y P. 2021. The 35th anniversary of the reintroduction of Milu deer to China: history, population status, achievements and challenges. Diversity Science, 29 (2): 160-166.(in Chinese) | |
Boyce M S.1992.Population viability analysis.Annual Review of Ecology and Systematics, 23: 481-506. | |
Brook B W, Burgman M A, Akcakaya H R, O’Grady J J, Frankham R.2002.Critiques of PVA ask the wrong questions: throwing the heuristic baby out with the numerical bath water. Conservation Biology, 16 (1): 262-263. | |
Caughley G.1994.Directions in conservation biology.Journal of Animal Ecology, 63: 215-244. | |
Cross P C, Beissinger S R. 2001. Using logistic regression to analyze the sensitivity of PVA models: a comparison of methods based on African wild dog models.Conservation Biology, 15 (5): 1335-1346. | |
Dimitriou K G, Kotsonas E G, Bakaloudis D E, Vlachos C G, Holloway G J, Yosef R. 2021. Population viability and conservation strategies for the Eurasian black vulture (Aegypius monachus) in Southeast Europe.Animals, 11: 124. | |
Ding Y H.2017. David’s Deer . Nanjing: Nanjing Normal University Press.(in Chinese) | |
Gui X J, Xiang Z F, Li L. 2007. A preliminary population viability analysis of Cabot’s tragopan (Tragopan caboti).Zoological Research, 28 (6): 626-633. (in Chinese) | |
Hedrick P W, Kalinowski S T. 2000. Inbreeding depression in conservation biology.Annual Review of Ecology and Systematics, 31:139-162. | |
Jiang Z G, Li C W, Zeng Y. 2006. Mating system, mating tactics and effective population size in Père David’s deer (Elaphurus davidianus). Acta Ecological Sinica, 26 (7): 2255-2260. (in Chinese) | |
Keller L F, Waller D M. 2002. Inbreeding effects in wild populations. Trends in Ecology Evolution, 17: 230-241. | |
Kohlmann S G, Schmidt G A, Garcelon D K. 2005. A population viability analysis for the island fox on Santa Catalina Island, California. Ecological Modelling, 183 (1): 77-94. | |
Lacy R C, Philip S M, Kathy T H. 2021. Vortex: A stochastic simulation of the extinction process. Version 10.5.5.Chicago Zoological Society, Brookfield, Illinois, USA. | |
Lacy R C. 1993. VORTEX: A computer simulation model for population viability analysis. Wildlife Research, 20 (1): 45-65. | |
Lang X, Yang B H, Cheng S L, Liu J B, Guo J, Sun X P. 2007. Population viability analysis of Gazella subgutturosa . China Herbivores, 27 (6): 42-44.(in Chinese) | |
Liu Q X.2006. Population viability analysis of red deer in Wandashan forestry area. Master thesis. Harbin: Northeast Forestry University.(in Chinese) | |
Li J, Li Y K, Miao L J, Liu T S, Lang S Y.2016. Population viability analysis for Sika deer (Cervus nippon kopschi) in the Taohongling National Nature Reserve in Jiangxi Province, China. Jiangxi Science, 32 (6): 815-822.(in Chinese) | |
Li P F, Ding Y H, Zhang Y M, Yang T, Song Y C, Cai J Q, Yao Y.2018. Distribution and Population investigation of wild Père David’s deer in the middle reaches of Yangtze River. Chinese Journal of Wildlife, 39 (1): 41-48. (in Chinese) | |
Li W D, Yu Q J. 2009.Extinction risk and population viability analysis of wild Père David’s deer.Prata Cultural Science, 26 (12): 108-112. (in Chinese) | |
Li Y M. 2003. Population viability analysis in conservation biology: precision and uses. Biodiversity Science, 11 (4): 340-350. (in Chinese) | |
Li Y, Wang H Y, Jiang Z G, Song Y C, Yang D D, Li L.2022. Seasonal differences of the Milu’s home range at the early rewilding stage in Dongting lake area, China. Global Ecology and Conservation, 35: 2351-9894. | |
Lindsey E, Mehta M, Dhulipala V, Oberhauser K, Altizer S.2009. Crowding and disease: effects of host density on response to infection in a butterfly‑parasite interaction.Ecological Entomology, 34: 551-561. | |
Liu B, An Y T, Xue D D, Sun D M, Wang L B, Liu D Y, Ren Y J, Shen H. 2021. Impacts of human activities and protection measures on the survival of wild Elaphurus davidianus . Sichuan Journal of Zoology, 40 (2): 176-182.(in Chinese) | |
Liu Q X, Zhang M H.2005.Evaluation on method estimating winter habitat carrying capacity of cervidae. Chinese Wildlife, 26 (5): 47-50. (in Chinese) | |
Lloyd‑Smith J, Cross P, Briggs C, Daugherty M, Getz W, Latto J, Sanchez M S, Smith A B, Swei A.2005. Should we expect population thresholds for wildlife disease? Trends in Ecology and Evolution, 20: 511-519. | |
Miao L J, Li Y K, Ye J, Li J, Xie G Y, Yuan F K. 2015. Population viability analysis for Hydropotes inermis in Poyang Lake. Sichuan Journal of Zoology, 34 (1): 133-140. (in Chinese) | |
Morris W F, Bloch P L, Hudgens B R. 2002. Population viability analysis in endangered species recovery plans: past use and future improvement. Ecological Applications, 12: 708-712. | |
Pei P Z, Wang L, Shao Y P, Shi C H, Yang Y W, Bao X K. 2018. Re-introduced Przewalski’s horses’s breeding success and population viability analysis in Anxi National Nature Reserve.Acta Ecological Sinica, 38 (2): 128-138. (in Chinese) | |
Ralls K, Ballou J D, Templeton A.1988. Estimates of lethal equivalents and the cost of inbreeding in mammals.Conservation Biology, 2 (2): 185-192. | |
Reed D H, O’Grady J J, Brook B W, Ballou J D, Frankham R. 2003. Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates.Biological Conservation, 113(1): 23-34. | |
Shaffer M L. 1990. Population viability analysis. Conservation Biology, 4 (1): 39-40. | |
Smith J H, King T, Campbell C, Cheyne S M, Nijman V.2017.Modelling population viability of three independent Javan Gibbon (Hylobates moloch) populations on Java, Indonesia.Folia Primatol, 88:507-522. | |
Song Y C, Li P F, Yang D D, Wen H J, Zhang Y M, Jiang Z G. 2015. Regulation of free‑ranging Milu population in Shihou, Hubei, China: a density-dependent decrease in birth rate.Biodiversity Science, 23 (1): 33-40. (in Chinese) | |
Song Y C, Yang D D, Zou S J, Li P F, Zhang H, Wen H J, Jiang Z G. 2015. Sex‑biased dispersal in naturally re‑wild Milu in the Dongting Lake region, China.Acta Ecological Sinica, 35(13):4416-4424. (in Chinese) | |
Song Y C. 2015. The research on dispersal behavior and population dynamics of natural re-wild Milu (Elaphurus davidianus) in the Dongting Lake. Ph.D thesis.Changsha: Central South University of Forestry and Technology. (in Chinese) | |
Su J S, Xue J H, Ding Y H. 2003. A study on the David’s deer population dynamics in Dafeng Nature Reserve area.Journal of Nanjing Forestry University (Natural Sciences Edition), 27 (3): 44-46.(in Chinese) | |
Tang S P, Li C H, Liu W, Wu L J, Bao W D. 2019. Viability analysis of Chinese goral population in Saihanwula National Nature Reserve, Inner Mongolia.Scientia Silvae Sinicae, 55 (3): 118-124. (in Chinese) | |
Tian Y, Wu J G, Kou X J, Wang T M, Smith A T, Ge J P. 2011.Methods and applications of population viability analysis (PVA). Chinese Journal of Applied Ecology, 22 (1): 257-267.(in Chinese) | |
Xia X, Ren J, Li L, Wang H Y, Song Y C, Yang D D, Jiang Z G. 2021. Autumn-winter habitat selection by the re‑wild Milu (Elaphurus davidianus) at the early stage after release in Dongting Lake Wetland, China.Biodiversity Science, 29: 1087-1096. (in Chinese) | |
Xue D Y, ZhangY Y, Cheng Z B, Zhong Z Y, Cao M, Fu M D, Bai J D, Yuan X J.2022. Père David’s deer (Elaphurus davidianus) in China: population dynamics and challenges.Journal of Resources and Ecology, 13 (1): 41-50. | |
Yang D D, Jiang Z G, Cao T R, Wen S Z, Zhao K J, Gui X J, Xu Y X. 2002. Feasibility of reintroducing Père David’s deer (Elaphurus davidianus) to the Dongting Lake region, Hunan Province.Biodiversity Science, 10 (4): 369-375. (in Chinese) | |
Yin Y J. 2016. Study on the diet, habitat capacity and population viability analysis of the reindeer in Aoluguya, Inner Mongolia, China. Ph.D thesis. Harbin: Northeast Forestry University. (in Chinese) | |
Yuan Z K.2008.Resources and Environment of Dongting Lake Wetland. Changsha: Hunan Normal University Press. (in Chinese) | |
Yu C Q, Liang Z C, Lu J, Ding Y H, Shen H. 1996. The growth and breeding habit of Milu (Elaphurus davidianus) in Dafeng Reserve. Acta Theriologica Sinica, 16 (1): 19-24.(in Chinese) | |
Yu Q J.2009. Population viability analysis and its application in the dynamics of Père David’s deer (Elaphurus davidianus) population.Master thesis. Lanzhou: Lanzhou University. (in Chinese) | |
Yu S C, Yu D Q, Wang L C, Li C A, He Q H, Xiang F F.2019. Remote sensing study of Dongting Lake beach changes before and after operation of three gorges reservoir. Earth Science, 44 (12): 4275-4283. (in Chinese) | |
Zachos F, Hmwe S S, Lorenzini R, Mattioli S. 2009.Population viability analysis and genetic diversity of the endangered red deer Cervus elaphus population from Mesola, Italy.Wildlife Biology, 15: 175-186. | |
Zhang L Y, Wen H J, Zhong Z Y, Li P F, Wang W, Li K, Sha P. 2011. The investigation on cause of death of Père David’s deer wild population in Hubei Shishou.Animal Husbandry and Veterinary Medicine, 43 (4): 89-91. (in Chinese) | |
Zhou G M, Li X J, Wang Z Q, Deng Z M, Yu M F. 2021. A study on the change and stability of wetland landscape pattern in east Dongting Lake.Hunan Forestry Science & Technology, 48 (4): 79-86. (in Chinese) | |
Zilko J P, Harley D, Pavlova A, Sunnucks P. 2021. Applying population viability analysis to inform genetic rescue that preserves locally unique genetic variation in a critically endangered mammal.Diversity, 13: 382. | |
丁玉华. 2017.达氏麋鹿. 南京: 南京师范大学出版社. | |
于长青, 梁崇歧, 陆军, 丁玉华, 沈华.1996.半自然条件下麋鹿的生长发育与繁殖习性.兽类学报, 16 (1): 19-24. | |
于清娟. 2009.种群生存力分析及其在麋鹿种群动态中的运用.兰州: 兰州大学硕士学位论文. | |
巴恒星, 胡鹏飞, 李春义.2021. 鹿科动物基因组学研究进展.遗传,43 (4): 308-322. | |
田瑜, 邬建国, 寇晓军, 王天明, Smith A T, 葛剑平.2011.种群生存力分析 (PVA) 的方法与应用.应用生态学报, 22 (1): 257-267. | |
白加德, 张渊媛, 钟震宇, 程志斌, 曹明, 孟玉萍.2021. 中国麋鹿种群重建 35年: 历程、成就与挑战.生物多样性, 29 (2): 160-166. | |
刘彬, 安玉亭, 薛丹丹, 孙大明, 王立波, 刘德元, 任义军, 沈华. 2021.人类活动对野化麋鹿生存的影响及保护对策.四川动物, 40 (2): 176-182. | |
刘群秀, 张明海.2005.鹿类动物冬季环境容纳量估算方法评价.野生动物, 26 (5): 47-50. | |
刘群秀. 2006.黑龙江省完达山林区马鹿种群生存力分析.哈尔滨: 东北林业大学硕士学位论文. | |
苏继申, 薛建辉, 丁玉华. 2003.大丰国家级自然保护区麋鹿的种群动态.南京林业大学学报 (自然科学版), (3): 44-46. | |
李义明. 2003.种群生存力分析: 准确性和保护应用.生物多样性, 11 (4): 340-350. | |
李佳, 李言阔, 缪泸君, 刘桃生, 梁少燕. 2014.江西桃红岭国家级自然保护区梅花鹿种群生存力分析.江西科学, 32 (6): 815-822. | |
李维德, 于清娟. 2009.野放麋鹿种群灭绝风险与生存力分析.草业科学, 26 (12): 108-112. | |
李鹏飞, 丁玉华, 张玉铭, 杨涛, 宋玉成, 蔡家奇, 姚毅. 2018.长江中游野生麋鹿种群的分布与数量调查.野生动物学报, 39 (1): 41-48. | |
杨道德, 蒋志刚, 曹铁如, 文仕知, 赵克金, 桂小杰, 徐永新. 2002.洞庭湖区重引入麋鹿的可行性研究.生物多样性, 10 (4): 369-375. | |
余姝辰, 余德清, 王伦澈, 李长安, 贺秋华, 向菲菲. 2019.三峡水库运行前后洞庭湖洲滩面积变化遥感认识.地球科学, 44 (12): 4275-4283. | |
宋玉成, 李鹏飞, 杨道德, 温华军, 张玉铭, 蒋志刚. 2015a. 湖北石首散养麋鹿种群的调控机制: 密度制约下种群产仔率下降. 生物多样性, 23 (1): 33-40. | |
宋玉成, 杨道德, 邹师杰, 李鹏飞, 张鸿, 温华军, 蒋志刚. 2015b. 洞庭湖区自然野化麋鹿种群的偏性扩散行为.生态学报, 35 (13): 4416-4424. | |
宋玉成. 2015.洞庭湖区自然野化麋鹿种群扩散机制与种群动态.长沙: 中南林业科技大学博士学位论文. | |
张林源, 温华军, 钟震宇, 李鹏飞, 王文, 李坤, 沙平.2011.湖北石首野生麋鹿种群大量死亡原因调查.畜牧与兽医, 43 (4): 89-91. | |
周根苗, 李新建, 王志强, 邓正苗, 余明峰.2021.东洞庭湖湿地景观格局演变及稳定性研究.湖南林业科技, 48 (4): 79-86. | |
郎侠, 杨博辉, 程胜利, 刘建斌, 郭健, 孙晓萍. 2007.鹅喉羚种群生存力分析.中国草食动物, 27 (6): 42-44. | |
袁正科.2008.洞庭湖湿地资源与环境.长沙: 湖南师范大学出版社. | |
桂小杰, 向左甫, 李立. 2007.黄腹角雉人工种群生存力初步分析.动物学研究, 28 (6): 626-633. | |
夏昕, 任静, 李立, 王海燕, 宋玉成, 杨道德, 蒋志刚. 2021. 洞庭湖区麋鹿再野化初期秋冬季生境选择. 生物多样性, 29 (8): 1087-1096. | |
殷亚杰. 2016.敖鲁古雅驯鹿食性及其栖息地容纳量与种群生存力分析.哈尔滨: 东北林业大学博士学位论文. | |
唐书培, 李春华, 刘威, 乌力吉, 鲍伟东. 2019.内蒙古赛罕乌拉国家级自然保护区中华斑羚种群生存力分析.林业科学, 55 (30): 118-124. | |
蒋志刚, 李春旺, 曾岩. 2006.麋鹿的配偶制度、交配计策与有效种群.生态学报, 26 (7): 2255-2260. | |
裴鹏祖, 王亮, 邵亚平, 石存海, 杨永伟, 包新康.2018.安西极旱荒漠国家级自然保护区重引入普氏野马繁殖成效与种群生存力分析.兽类学报, 38 (2): 128-138. | |
缪泸君, 李言阔, 叶晶, 李佳, 谢光勇, 袁芳凯. 2015.鄱阳湖区獐种群生存力分析.四川动物, 34 (1): 133-140. |
[1] | 任义军, 孙大明, 甄军爱, 王立波, 赵雨梦, 沈华, 刘彬, 陈玉清. 江苏大丰麋鹿国家级自然保护区麋鹿死亡分析[J]. 兽类学报, 2022, 42(6): 741-748. |
[2] | 孟庆辉, 柏超, 宋苑, 单云芳, 李俊芳, 张树苗, 白加德, 钟震宇, 张成林, 孟秀祥. 重引入对麋鹿种群分娩定时及同步化的影响[J]. 兽类学报, 2022, 42(4): 379-386. |
[3] | 裴鹏祖 王亮 邵亚平 石存海 杨永伟 包新康. 安西极旱荒漠国家级自然保护区重引入普氏野马繁殖成效与种群生存力分析[J]. 兽类学报, 2018, 38(2): 128-138. |
[4] | 吴海龙, 万秋红, 方盛国, 张林源, 夏经世, 钟震宇. 麋鹿血液cDNA 文库的构建[J]. , 2007, 27(4): 380-384. |
[5] | 丁玉华,朱 梅,任义军. 苏北滨海湿地麋鹿恢复种群的研究[J]. , 2006, 26(3): 249-254. |
[6] | 曾岩 蒋志刚 李春旺 阎彩娥 张林源 夏经世 唐宝田. 麋鹿幼仔的活动同步性与同性聚群倾向[J]. , 2004, 24(1): 78-81. |
[7] | 任文华 杨光 魏辅文 胡锦矗. 马边大风顶自然保护区大熊猫种群生存力模拟分析[J]. , 2002, 22(4): 264-269. |
[8] | 李春旺, 蒋志刚, 房继明, 姜国华,丁玉华, 沈华,徐安红. 麋鹿繁殖行为和粪样激素水平变化的关系[J]. , 2000, 20(2): 88-100. |
[9] | 蒋志刚. 麋鹿行为谱及PAE编码系统[J]. , 2000, 20(1): 1-12. |
[10] | 于长青,梁崇歧,陆军,丁玉华. 大丰麋鹿种群的增长与管理[J]. , 1996, 16(4): 259-263. |
[11] | 于长青,梁崇歧, 陆军. 半自然条件下糜鹿的生长发育与繁殖习性[J]. , 1996, 16(1): 19-24. |
[12] | 陆军, 梁崇歧, 于长青. 麋鹿幼仔一周龄内的活动观察[J]. , 1993, 13(4): 251-255. |
[13] | 蔡桂全1, 谢家华2, Nihal Mathur3. 麋鹿发情期主要活动的时间分配及行为研究[J]. , 1988, 8(3): 166-171. |
[14] | 北京麋鹿生态实验中心. 由英国重引进的糜鹿今春产仔[J]. , 1987, 7(2): 146-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||