Akcay H G,Kabasakal B,Aksu D,Demir N,ÖZ M,Erdoğan A, 2020. Automated bird counting with deep learning for regional bird distribution mapping[J]. Animals, 10 (7):1027. DOI:10. 3390/ani10071207. Annesa O D,Kartiko C,Prasetiadi A,2020. Identification of reptile species using convolutional neural networks (CNN)[J]. Rekayasa Sistem Dan Teknologi Informasi,4 (5):899-906. Antoine M D,Marion V,Georgina B,Frederic T,Beata U,2021.Machine learning is a powerful tool to study the effect of cancer on species and ecosystems[J]. Methods in Ecology and Evolution,12 (12):2310-2323. DOI:10. 29207/resti. v4i5. 2282. Bala P C,Eisenreich B R,Yoo S B,Hayden B Y,Park H S,Zimmermann J,2020. Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio[J]. Nature Communications,11 (1). DOI:10. 1038/s41467-020-18441-5. Bengio Y, Lamblin P, Popovici D, Larochelle H, 2006. Greedy layer-wise training of deep networks[C]. Neural Information Processing Systems 19. DOI:10. 7551/mitpress/7503. 003. 0024. Bertasius G, Wang H, Torresani L, 2021. Is space-time attention all you need for video understanding?[C]. International Conference on Machine Learning. DOI:10. 48550/arXiv. 2102. 05095. Bi D X, Chen D L, Chen G T, et al., 2024. DeepSeek LLM:scaling open-source language models with longtermism[J/OL]. arXiv preprint arXiv:2401. 02954. Biggs B, Boyne O, Charles J, Fitzgibbon A, Cipolla R, 2020.Who left the dogs out? 3D animal reconstruction with expectation maximization in the loop[C]. Computer Vision-ECCV 2020.DOI:10. 1007/978-3-030-58621-8_12. Biggs B, Roddick T, Fitzgibbon A, Cipolla R, 2019. Creatures great and SMAL:recovering the shape and motion of animals from video[C]. Computer Vision-ACCV 2018. DOI:10. 1007/978-3-030-20873-8_1. Bochkovskiy A, Wang C Y, Liao H Y M, 2020. YOLOv4:optimal speed and accuracy of object detection[J/OL]. arXiv preprint arXiv:2004. 10934. Bogucki R,Cygan M,Khan C B,Klimek M,Milczek J K,Mucha M,2018. Applying deep learning to right whale photo identification[J]. Conservation Biology,33 (3):676-684. Boudaoud L B,Maussang F,Garello R,Chevallier A,2019. Marine bird detection based on deep learning using high-resolution aerial images[C]. Oceans2019-Marseille. DOI:10. 1109/OCEANSE. 2019. 8867242. Brust C A, Burghardt T, Groenenberg M, KäDing C, KüHl H S, Manguette M L, Denzler J, 2017. Towards automated visual monitoring of individual gorillas in the wild[C]. 2017 IEEE International Conference on Computer Vision Workshops(ICCVW). DOI:10. 1109/ICCVW. 2017. 333,2820-2830. Cao J K, Tang H Y, Fang H S, Shen X Y, Lu C, Tai Y W, 2019. Cross-domain adaptation for animal pose estimation[C]. 2019 IEEE/CVF International Conference on Computer Vision(ICCV). DOI:10. 1109/ICCV. 2019. 00959. Cao Y, Xie Z D, Liu B, Lin Y T, Zhang Z, Hu H, 2020.Parametric instance classification for unsupervised visual feature learning[J]. Advances in Neural Information Processing Systems, 33:15614-15624. Cao Z, Hidalgo G, Simon T, Wei S E, Sheikh Y, 2021. OpenPose:realtime multi-person 2D pose estimation using part affinity fields[J]. Transactions on Pattern Analysis and Machine Intelligence, 43 (1):172-186. DOI:10. 1109/TPAMI. 2019. 2929257. Carl C,SchöNfeld F,Profft I,Klamm A,Landgraf D,2020. Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model[J]. European Journal of Wildlife Research,66 (4):62.DOI:10. 1007/s10344-020-01404-y. Chen C H,Ramanan D,2017. 3D human pose estimation=2D pose estimation + matching[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). DOI:10. 1109/CVPR. 2017. 610. Chen C H, Tyagi A, Agrawal A, Drover D, Mv R, Stojanov S, Rehg J M,2019. Unsupervised 3D pose estimation with geometric self-supervision[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). DOI:10. 1109/CVPR. 2019. 00586. Chen P,Swarup P,Matkowski W M,Kong A W,Han S,Zhang Z,Rong H,2020. A study on giant panda recognition based on images of a large proportion of captive pandas[J]. Ecology and Evolution,10 (7):3561-3573. DOI:10. 1002/ece3. 6152. Cui Y, Jia M L, Lin T Y, Song Y, Belongie S J, 2019.Class-balanced loss based on effective number of samples[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). DOI:10. 1109/CVPR. 2019. 00949. Dai D M,Deng C Q,Zhao C G,Xu R X,Gao H Z,Chen D L, Li J S, Zeng W D, Yu X K, Wu Y, Xie Z D, Li Y K, Huang P P, Luo F L, Ruan C, Sui Z F, Liang W F, 2024. DeepSeekMoE:towards ultimate expert specialization in mixture-of-experts language models[C]. 62nd Annual Meeting of the Association for Computational Linguistics. DOI:10. 18653/v1/2024. acl-long. 70. Deepseek-Ai,Liu A X,Feng B,et al., 2024. DeepSeek-V3 technical report[J/OL]. arXiv preprint arXiv:2412. 19437. Deepseek-Ai, Guo D Y, Yang D J, et al., 2025. DeepSeek-R1:incentivizing reasoning capability in LLMs via reinforcement learning[J/OL]. arXiv preprint arXiv:2501. 12948. Desai B, Patel A J, Patel V, Shah S, Raval M S, Ghosal R, 2022. Identification of free-ranging mugger crocodiles by applying deep learning methods on UAV imagery[J]. Ecological Informatics,72:101874. DOI:10. 1016/j. ecoinf. 2022. 101874. Dhariwal P,Nichol A,2021. Diffusion models beat GANs on image synthesis[C]. Neural Information Processing Systems 34 (NeurIPS 2021). DOI:10. 48550/arXiv. 2105. 05233. Ditria E M,Lopez-Marcano S,Sievers M,Jinks E L,Brown C J, Connolly R M,2020. Automating the analysis of fish abundance using object detection:optimizing animal ecology with deep learning[J]. Frontiers in Marine Science, 7:429. DOI:10. 3389/fmars. 2020. 00429. Donahue J,Hendricks L A,Rohrbach M,Venugopalan S,Guadarrama S,Saenko K,Darrell T,2017. Long-term recurrent convolutional networks for visual recognition and description[J]. Transactions on Pattern Analysis and Machine Intelligence, 39(4):677-691. DOI:10. 1109/TPAMI. 2016. 2599174. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X H, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N, 2021. An image is worth 16x16 words:transformers for image recognition at scale[J/OL]. Computing Research Repository, arXiv preprint arXiv:2010. 11929. Duporge I, Isupova O, Reece S, Macdonald D W, Wang T J, 2021. Using very high-resolution satellite imagery and deep learning to detect and count African elephants in heterogeneous landscapes[J]. Remote Sensing in Ecology and Conservation, 7(3):369-381. DOI:10. 1002/rse2. 195. Egmont P M, Ridder D D, Handels H, 2002. Image processing with neural networks-a review[J]. Pattern Recognition, 35(10):2279-2301. DOI:10. 1016/s0031-3203(01) 00178-9. Fabrizio S, Alessandro T, Julio B, Guillermo B, Fernando H, 2019. Reliable methods for identifying animal deaths in GPS- and satellite-tracking data:review, testing and calibration[J]. Journal of Applied Ecology,56 (3):562-572. DOI:10. 1111/1365-2664. 13294. Fan Z,Liu Y,Xovee X,Goce T,2021. Decoupling representation and regressor for long-tailed information cascade prediction[C]. Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)(2021). DOI:10. 1145/3404835. 3463104. Faurina R, Wijanarko A, Heryuanti A F, Ishak S I, Agustian I. 2023. Comparative study of ensemble deep learning models to determine the classification of turtle species[J]. Computer Science and Information Technologies,4 (1):24-32. Feng L Q, Zhao Y Q, Sun Y C, Zhao W X, Tang J X, 2021.Action recognition using a spatial-temporal network for wild felines[J]. Animals,11 (2):485. DOI:10. 3390/ani11020485. Ferreira A C,Silva L R,Renna F,Brandl H B,Renoult J P,Farine D R,Covas R,Doutrelant C,2020. Deep learning-based methods for individual recognition in small birds[J]. Methods in Ecology and Evolution, 11 (9):1072-1085. DOI:10. 1111/2041-210X. 13436. Freytag A,Rodner E,Simon M,Loos A,KüHl H S,Denzler J, 2016. Chimpanzee faces in the wild:log-euclidean CNNs for predicting identities and attributes of primates[J]. German Conference on Pattern Recognition, 9796:51-63. DOI:10. 1007/978-3-319-45886-1_5. Gao C Q, Wu J F, Yu H, Yin J H, Guo S H, 2022. FIRN:a novel fish individual recognition method with accurate detection and attention mechanism[J]. Electronics,11 (21):3459. DOI:10. 3390/electronics11213459. Gavali P R,Banu J S,2020. Bird species identification using deep learning on GPU platform[C]. 2020 International Conference on Emerging Trends in Information Technology and Engineering(ic-ETITE). DOI:10. 1109/ic-ETITE47903. 2020. 85. Glorot X,Bengio Y,2010. Understanding the difficulty of training deep feedforward neural networks[C]. Journal of Machine Learning Research Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS). DOI:10. 5555/3104322. 3104425. Goodfellow I,Pouget-Abadie J,Mirza M,Xu B,Warde-Farley D, Ozair S,Courville A,Bengio Y,2020. Generative adversarial networks[J]. Communications of the ACM,63 (11):139-144. Graving J M, Chae D, Naik H, Li L, Koger B, Costelloe B R, Couzin I D,2019. DeepPoseKit,a software toolkit for fast and robust animal pose estimation using deep learning[J]. eLife, 8.DOI:10. 7554/eLife. 47994. DOI:10. 7554/eLife. 47994. Gray P C,Bierlich K C,Mantell S A,Friedlaender A S,Goldbogen J A,Johnston D W,2019. Drones and convolutional neural networks facilitate automated and accurate cetacean species identification and photogrammetry[J]. Methods in Ecology and Evolution,10 (9):1490-1500. DOI:10. 1111/2041-210X. 13246. Guo Q W,Wang C T,Xiao D Q,Huang Q,2024. A lightweight open-world pest image classifier using ResNet8-based matching network and NT-Xent loss function[J]. Expert Systems with Applications,237:121395. DOI:10. 1016/j. eswa. 2023. 121395. Guo S T,Xu P F,Miao Q G,Shao G F,Chapman C A,Chen X J,He G,Fang D Y,Zhang H,Sun Y W,Shi Z H,Li B G, 2020. Automatic identification of individual primates with deep learning techniques[J]. iScience,23 (8):DOI:org/10. 1016/j. isci. 2020. 101412. Guo Y M, Liu Y, Oerlemans A, Lao S Y, Wu S, Lew M S, 2016. Deep learning for visual understanding:a review[J]. Neurocomputing, 187:27-48. DOI:10. 1016/j. neucom. 2015. 09. 116. Harrison D J,Chapin T G,1998. Extent and connectivity of habitat for wolves in eastern north America[J]. Wildlife Society Bulletin, 26 (4):767-775. He K M,Zhang X Y,Ren S Q,Sun J,2016. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). DOI:10. 1109/CVPR. 2016. 90. Hebert P D N,Gregory T R,2005. The promise of DNA barcoding for taxonomy[J]. Systematic Biology,54 (5):852-859. DOI:10. 1080/10635150500354886. Hinton G E,Salakhutdinov R R,2006. Reducing the dimensionality of data with neural networks[J]. Science, 313 (5786):504-507. DOI:10. 1126/science. 1127647. Hinton G E,Srivastava N,Krizhevsky A,Sutskever I,Salakhutdinov R R, 2012. Improving neural networks by preventing co-adaptation of feature detectors[J/OL]. Neural and Evolutionary Computing,arXiv preprint arXiv:1207. 0580. Hou J,He Y X,Yang H B,Connor T,Gao J,Wang Y J,Zeng Y C, Zhang J D, Huang J Y, Zheng B C, Zhou S Q, 2020. Identification of animal individuals using deep learning:a case study of giant panda[J]. Biological Conservation, 242:108414. DOI:10. 1016/j. biocon. 2020. 108414. Howard A G, Zhu M L, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H, 2017. Mobilenets:efficient convolutional neural networks for mobile vision applications[J]. Computer Vision and Pattern Recognition, arXiv preprint arXiv:1704. 04861. Huang Y P,Basanta H,2021. Recognition of endemic bird species using deep learning models[J]. IEEE Access, 9:102975-102984. DOI:10. 1109/ACCESS. 2021. 3098532. Iskakov K,Burkov E,Lempitsky V,Malkov Y,2019. Learnable triangulation of human pose[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). DOI:10. 1109/ICCV. 2019. 00781. Jiang L,Lee C,Teotia D,Ostadabbas S,2022. Animal pose estimation:a closer look at the state-of-the-art, existing gaps and opportunities[J]. Computer Vision and Image Understanding, 222:103483. DOI:10. 1016/j. cviu. 2022. 103483. Jin L L,Liang H,2017. Deep learning for underwater image recognition in small sample size situations[C]. Oceans2017- Aberdeen. DOI:10. 1109/OCEANSE. 2017. 8084645. Joe Y N,Matthew J H,Sudheendra V,Oriol V,Rajat M,George T,2015. Beyond short snippets:deep networks for video classification[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). DOI:10. 1109/CVPR. 2015. 7299101. Joska D,Clark L,Muramatsu N,Jericevich R,Nicolls F,Mathis A,Mathis M W,Patel A,2021. AcinoSet:a 3D pose estimation dataset and baseline models for cheetahs in the wild[C]. 2021 IEEE International Conference on Robotics and Automation(ICRA). DOI:10. 1109/ICRA48506. 2021. 9561338. Kanopoulos N,Vasanthavada N,Baker R,1988. Design of an image edge detection filter using the sobel operator[J]. IEEE Journal of Solid-State Circuits, 23 (2):358-367. DOI:10. 1109/4. 996. Kassim Y M, Byrne M E, Burch C G, Mote K, Hardin J B, Larsen D R,Palaniappan K,2020. Small object bird detection in infrared drone videos using Mask R-CNN deep learning[J]. Electronic Imaging,32 (8):85-1-85-8. Kekre H B, Thepade S D, Banura V K, 2011. Amelioration of walsh-hadamard texture patterns based image retrieval using HSV color space[J]. International Journal of Computer Science and Information Security,9 (3):64-69. Kocon J,Cichecki I,Kaszyca O,Kochanek M,Szydlo D,Baran J,Bielaniewicz J,Gruza M,Janz A,Kanclerz K,Kocon A, Koptyra B,Kowszewicz W M,Milkowski P,Oleksy M,Piasecki M, Radlinski L, Wojtasik K, Wozniak S, Kazienko P, 2023. ChatGPT:jack of all trades,master of none[J]. Information Fusion,99:101861. DOI:10. 1016/j. inffus. 2023. 101861. Krizhevsky A,Sutskever I,Hinton G E,2017. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,60 (6):84-90. DOI:10. 1145/3065386. |