兽类学报 ›› 2026, Vol. 46 ›› Issue (1): 20-38.DOI: 10.16829/j.slxb.150954

• 综述 • 上一篇    

深度学习在野生动物图像识别分析中的应用进展

陈诗雨1, 侯金1,2, 刘丹3, 刘晶3, 罗鹏4, 郑伯川4, 张晋东1   

  1. 1 西南野生动植物资源保护教育部重点实验室, 西华师范大学生命科学学院, 南充 637002;
    2 东北虎豹国家公园保护生态学国家林业和草原局重点实验室, 北京师范大学生命科学学院, 北京 100875;
    3 西北农林科技大学信息工程学院, 杨凌 712100;
    4 西华师范大学计算机学院, 南充 637001
  • 收稿日期:2024-05-13 修回日期:2025-03-17 发布日期:2026-02-03
  • 通讯作者: 张晋东,E-mail:zhangjd224@cwnu.edu.cn
  • 作者简介:陈诗雨(2001-),女,硕士研究生,主要从事野生动物保护与自然保护区建设等研究;侯金(1995-),男,博士研究生,主要从事动物生态学研究.
  • 基金资助:
    国家林业和草原局重点项目(CGF2024001);国家自然科学基金面上项目(U2571211,32470541,32270551,U21A20193);北京师范大学博士生学科交叉基金项目(BNUXKJC2221);教育部春晖计划项目(2018);西华师范大学省级大学生创新创业项目(S202110638062)

Progress in the application of deep learning in wildlife image recognition and analysis

CHEN Shiyu1, HOU Jin1,2, LIU Dan3, LIU Jing3, LUO Peng4, ZHENG Bochuan4, ZHANG Jindong1   

  1. 1 Key Laboratory of Southwest Wildlife Resources Protection, Ministry of Education, College of Life Sciences, West China Normal University, Nanchong 637002, China;
    2 National Forestry and Grassland Administration Key Laboratory for Conservation Ecology of Northeast Tiger and Leopard National Park, College of Life Sciences, Beijing Normal University, Beijing 100875, China;
    3 College of Information Engineering, Northwest A & F University, Yangling 712100, China;
    4 School of Computer Science, West China Normal University, Nanchong 637001, China
  • Received:2024-05-13 Revised:2025-03-17 Published:2026-02-03

摘要: 建立完善的野生动物监测体系是开展保护研究的基础。传统人为监测手段由于存在多种局限,部分监测工作逐渐被红外相机陷阱技术所替代,而红外相机监测技术的广泛使用也随之带来海量数据处理与分析的难题。因此,亟需寻找高效处理分析大量红外相机数据的方法。近年来,深度学习在野生动物的图像研究上开展了诸多实践应用。为全面了解深度学习理论与技术在野生动物图像识别上的应用进展,本文梳理了2000—2024年的相关研究,从无效图像筛除、物种识别、个体识别和行为识别等4个方面阐述了常用网络模型应用及其研究进展。总结了深度学习在野生动物图像中的研究现状,并着重讨论了深度学习在红外相机图像中的现存问题及解决方案。针对人工智能图像处理技术在红外相机监测工作中的应用前景进行分析,并对其未来发展做出建议与展望,以期为野生动物的个体识别和种群监测的研究与工作提供思路与方向。

关键词: 图像识别, 人工智能, 深度学习, 红外相机监测

Abstract: Establishing a comprehensive wildlife monitoring system is the foundation for conducting conservation research. Traditional manual monitoring methods have various limitations, and some monitoring efforts have gradually been replaced by infrared camera trap technology. Nevertheless, the widespread use of infrared camera monitoring technology has introduced challenges in handling and analyzing massive amounts of data. Therefore, it is urgent to find an efficient method to process and analyze a large number of infrared camera data. In recent years, deep learning has been widely applied in the study of wild animal images. In order to comprehensively understand the application progress of deep learning theory and technology in wildlife image recognition, we provide an overview of the relevant research from 2000 to 2024. It elaborates on commonly used network models applications and their research progress in terms of eliminating invalid data, species identification, individual recognition, and behavior recognition. We summarize the status of deep learning in two types of images of wild animals, and emphatically discuss the existing problems and solutions of deep learning in infrared camera images. This paper analyzes the potential of applying artificial intelligence image processing techniques in infrared camera monitoring work and provides recommendations and insights for future development in order to provide ideas and directions for research on individual identification and population monitoring of wild animals.

Key words: Image recognition, Artificial intelligence, Deep learning, Infrared camera monitoring

中图分类号: