ACTA THERIOLOGICA SINICA ›› 2022, Vol. 42 ›› Issue (5): 519-530.DOI: 10.16829/j.slxb.150721
• ORIGINAL PAPERS • Previous Articles Next Articles
Liangzhi ZHANG1,2, Xianjiang TANG1,3, Shien Ren1,3, Yaqi ZHAO1,3, Yanming ZHANG1,2()
Received:
2022-08-02
Accepted:
2022-08-22
Online:
2022-09-30
Published:
2022-09-21
Contact:
Yanming ZHANG
张良志1,2, 唐显江1,3, 任世恩1,3, 赵雅琪1,3, 张堰铭1,2()
通讯作者:
张堰铭
作者简介:
张良志 (1981- ),女,副研究员,主要从事分子生态学研究.
基金资助:
CLC Number:
Liangzhi ZHANG, Xianjiang TANG, Shien Ren, Yaqi ZHAO, Yanming ZHANG. Effects of captivity on the assembly process of microbiota communities of plateau pikas[J]. ACTA THERIOLOGICA SINICA, 2022, 42(5): 519-530.
张良志, 唐显江, 任世恩, 赵雅琪, 张堰铭. 室内饲养对高原鼠兔肠道微生物群落构建过程的影响[J]. 兽类学报, 2022, 42(5): 519-530.
Fig. 1 Differences in alpha diversity of the gut microbiota among three plateau pika groups. a: Sobs index; b: Ace index; c: Chao index; d: Coverage index; e: Shannon index; f: Shannoneven index
Fig. 2 The structure of the gut microbiota among different plateau pika groups. a: PCoA based on unweighted UniFrac distances; b: PCoA based on weighted UniFrac distances
OTU ID | Cap_Apr | Wild_Apr | Wild_Jan |
---|---|---|---|
d__Bacteria; k__norank_d__Bacteria; p__Firmicutes | 0.339 225 | 0.641 988 | 0.659 580 |
d__Bacteria; k__norank_d__Bacteria; p__Bacteroidetes | 0.558 989 | 0.225 796 | 0.252 759 |
d__Bacteria; k__norank_d__Bacteria; p__Epsilonbacteraeota | 0.028 674 | 0.063 268 | 0.012 728 |
d__Bacteria; k__norank_d__Bacteria; p__Spirochaetes | 0.031 141 | 0.021 820 | 0.019 720 |
d__Bacteria; k__norank_d__Bacteria; p__Verrucomicrobia | 0.010 711 | 0.009 175 | 0.015 093 |
d__Bacteria; k__norank_d__Bacteria; p__Proteobacteria | 0.006 001 | 0.011 293 | 0.015 427 |
d__Bacteria; k__norank_d__Bacteria; p__unclassified_k__norank_d__Bacteria | 0.018 309 | 0.005 707 | 0.006 724 |
Others | 0.006 950 | 0.020 953 | 0.017 969 |
Table 1 The percentage of the bacteria in phylum level of plateau pika
OTU ID | Cap_Apr | Wild_Apr | Wild_Jan |
---|---|---|---|
d__Bacteria; k__norank_d__Bacteria; p__Firmicutes | 0.339 225 | 0.641 988 | 0.659 580 |
d__Bacteria; k__norank_d__Bacteria; p__Bacteroidetes | 0.558 989 | 0.225 796 | 0.252 759 |
d__Bacteria; k__norank_d__Bacteria; p__Epsilonbacteraeota | 0.028 674 | 0.063 268 | 0.012 728 |
d__Bacteria; k__norank_d__Bacteria; p__Spirochaetes | 0.031 141 | 0.021 820 | 0.019 720 |
d__Bacteria; k__norank_d__Bacteria; p__Verrucomicrobia | 0.010 711 | 0.009 175 | 0.015 093 |
d__Bacteria; k__norank_d__Bacteria; p__Proteobacteria | 0.006 001 | 0.011 293 | 0.015 427 |
d__Bacteria; k__norank_d__Bacteria; p__unclassified_k__norank_d__Bacteria | 0.018 309 | 0.005 707 | 0.006 724 |
Others | 0.006 950 | 0.020 953 | 0.017 969 |
OTU ID | Cap_Apr | Wild_Apr | Wild_Jan |
---|---|---|---|
d__Bacteria; k__norank_d__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae | 0.165 574 | 0.302 052 | 0.350 869 |
d__Bacteria; k__norank_d__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales;f__Muribaculaceae | 0.412 680 | 0.104 957 | 0.088 984 |
d__Bacteria; k__norank_d__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae | 0.081 744 | 0.211 662 | 0.192 503 |
d__Bacteria; k__norank_d__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales;f__Prevotellaceae | 0.089 237 | 0.050 616 | 0.102 269 |
d__Bacteria; k__norank_d__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Rikenellaceae | 0.040 646 | 0.057 848 | 0.050 388 |
d__Bacteria; k__norank_d__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Christensenellaceae | 0.023 953 | 0.034 994 | 0.042 735 |
d__Bacteria; k__norank_d__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Clostridiales_vadinBB60_group | 0.017 045 | 0.051 833 | 0.031 483 |
d__Bacteria; k__norank_d__Bacteria; p__Firmicutes; c__Erysipelotrichia; o__Erysipelotrichales; f__Erysipelotrichaceae | 0.028 851 | 0.027 822 | 0.026 446 |
d__Bacteria; k__norank_d__Bacteria; p__Epsilonbacteraeota; c__Campylobacteria; o__Campylobacterales; f__Campylobacteraceae | 0.023 531 | 0.057 268 | 0.011 288 |
d__Bacteria; k__norank_d__Bacteria; p__Spirochaetes; c__Spirochaetia; o__Spirochaetales;f__Spirochaetaceae | 0.031 141 | 0.021 820 | 0.019 720 |
Others | 0.030 931 | 0.054 559 | 0.052 066 |
Table 2 The percentage of the bacteria in family level of plateau pika
OTU ID | Cap_Apr | Wild_Apr | Wild_Jan |
---|---|---|---|
d__Bacteria; k__norank_d__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae | 0.165 574 | 0.302 052 | 0.350 869 |
d__Bacteria; k__norank_d__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales;f__Muribaculaceae | 0.412 680 | 0.104 957 | 0.088 984 |
d__Bacteria; k__norank_d__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae | 0.081 744 | 0.211 662 | 0.192 503 |
d__Bacteria; k__norank_d__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales;f__Prevotellaceae | 0.089 237 | 0.050 616 | 0.102 269 |
d__Bacteria; k__norank_d__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Rikenellaceae | 0.040 646 | 0.057 848 | 0.050 388 |
d__Bacteria; k__norank_d__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Christensenellaceae | 0.023 953 | 0.034 994 | 0.042 735 |
d__Bacteria; k__norank_d__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Clostridiales_vadinBB60_group | 0.017 045 | 0.051 833 | 0.031 483 |
d__Bacteria; k__norank_d__Bacteria; p__Firmicutes; c__Erysipelotrichia; o__Erysipelotrichales; f__Erysipelotrichaceae | 0.028 851 | 0.027 822 | 0.026 446 |
d__Bacteria; k__norank_d__Bacteria; p__Epsilonbacteraeota; c__Campylobacteria; o__Campylobacterales; f__Campylobacteraceae | 0.023 531 | 0.057 268 | 0.011 288 |
d__Bacteria; k__norank_d__Bacteria; p__Spirochaetes; c__Spirochaetia; o__Spirochaetales;f__Spirochaetaceae | 0.031 141 | 0.021 820 | 0.019 720 |
Others | 0.030 931 | 0.054 559 | 0.052 066 |
Fig. 4 Taxonomic alterations of the gut microbiota in different plateau pika groups. Pairwise comparisons of Cap_Apr vs. Wild_Apr; Cap_Apr vs. Wild_Jan; Wild_Apr vs. Wild_Jan in phylum level ( a, b, c) and in family level (d, e, f) by the linear discriminant analysis effect size (LEfSe) method (LDA > 4, P < 0.05)
Fig. 5 Functional variations of the gut microbiota in different plateau pika groups. Level 3 KEGG pathways were differentially represented between the Cap_Apr vs. Wild_Apr (a), Cap_Apr vs. Wild_Jan (b), Wild_Apr vs. Wild_Jan (c). Differences were assessed by the Welch t-test and are denoted as the corrected P-value
Fig. 6 Assembly process of microbiota communities in different groups of plateau pikas. Predicted occurrence frequencies for Cap_Apr (a), Wild_Apr (b) and Wild_Jan (c)
成分 Content | 比例 Percentage(%) |
---|---|
水分 Water | 7.8 |
粗蛋白 Crude protein | 16.6 |
粗脂肪 Crude fat | 3.1 |
粗纤维 Crude fiber | 12.2 |
粗灰分 Crude ash | 8.5 |
无氮浸出物 Nnitrogen-free extract | 52.8 |
Table 3 The content of the artificial diets of captive plateau pikas
成分 Content | 比例 Percentage(%) |
---|---|
水分 Water | 7.8 |
粗蛋白 Crude protein | 16.6 |
粗脂肪 Crude fat | 3.1 |
粗纤维 Crude fiber | 12.2 |
粗灰分 Crude ash | 8.5 |
无氮浸出物 Nnitrogen-free extract | 52.8 |
Bäckhed F, Ley R E, Sonnenburg J L, Peterson D A, Gordon J I. 2005. Host-bacterial mutualism in the human intestine. Science, 307: 1915-1920. | |
Bo T B, Zhang X Y, Kohl K D, Wen J, Tian S J, Wang D H. 2020. Coprophagy prevention alters microbiome, metabolism, neurochemistry, and cognitive behavior in a small mammal. ISME Journal, 14 (10): 2625-2645. | |
Chalifoux L V, Bronson R T, Escajadillo A, McKenna S. 1982. An analysis of the association of gastroenteric lesions with chronic wasting syndrome of marmosets. Veterinary Pathology Supplement, 7: 141-162. | |
Chase J M. 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science, 328: 1388-1391. | |
Chave J. 2004. Neutral theory and community ecology. Ecology Letters, 7: 241-253. | |
Chesson P. 2000. Mechanisms of maintenance of species diversity. Annual Review Ecology Systematics, 31: 343-366. | |
Chiyo P I, Grieneisen L E, Wittemyer G, Moss C J, Lee P C, Douglas-Hamilton I, Archie E A. 2014. The influence of social structure, habitat, and host traits on the transmission of Escherichia coli in wild elephants. PLoS ONE, 9 (4): e93408. | |
Chen S F, Zhou Y Q, Chen Y R, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34: i884-i890. | |
Clayton J B, Vangay P, Huang H, Ward T, Hillmann B M, Al‑Ghalith G A, Travis D A, Long H T, Tuan B V, Minh V V, Cabana F, Nadler T, Toddes B, Murphy T, Glander K E, Johnson T J, Knights D. 2016. Captivity humanizes the primate microbiome. Proceeding of the National Academy of Sciences of the United States of America, 113: 10376-10381. | |
Craft M E. 2015. Infectious disease transmission and contact networks in wildlife and livestock. Philosphical Transactions Royal Society B-Biological Science, 370 (1669): 20140107. | |
Crean A J, Senior A M. 2019. High-fat diets reduce male reproductive success in animal models: a systematic review and meta-analysis. Obesity Reviews, 20: 921-933. | |
Drake J A. 1990. The mechanics of community assembly and succession. Journal of Theoretical Biology, 147 (2): 213-233. | |
Edgar R C. 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10: 996-998. | |
Etienne R S, Olff H. 2004. A novel genealogical approach to neutral biodiversity theory. Ecology Letters, 7: 170-175. | |
Fan C, Zhang L Z, Jia S G, Tang X J, Fu H B, Li W J, Liu C F, Zhang H, Cheng Q, Zhang Y M. 2022. Seasonal variations in the composition and functional profiles of gut microbiota reflect dietary changes in plateau pikas. Integrative Zoology, 17 (3): 379-395. | |
Fu H B, Zhang L Z, Chao F, Li W J, Liu C F, Zhang H, Qi C, Zhang Y M. 2021. Sympatric yaks and plateau pikas promote microbial diversity and similarity by the mutual utilization of gut microbiota. Microorganisms, 9 (9): 1890. | |
Gao H M, Chi X W, Qin W, Wang L, Song P F, Cai Z Y, Zhang J J, Zhang T Z. 2019. Comparison of the gut microbiota composition between the wild and captive Tibetan wild ass (Equus kiang). Journal of Applied Microbiology, 126: 1869-1878. | |
Guo W, Sudhanshu M, Wang C D, Zhang H M, Ning R H, Kong F L, Zeng B, Zhao J C, Li Y. 2019. Comparative study of gut microbiota in wild and captive giant pandas (Ailuropoda melanoleuca). Genes, 10: 827. | |
He Z M. 2010. Potentials and prospects: laboratory animal derived from resource animals in China. Chinese Journal of Comparative Medicine, 20: 1-7.(in Chinese) | |
Hubbell S P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton NJ: Princeton University Press. | |
Hutchinson G E. 1959. Homage to santa rosalia or why are there so many kinds of animals? American Naturalist, 93 (870): 145-159. | |
Holt C C, van der Giezen M, Daniels C L, Stentiford G D, Bass D. 2020. Spatial and temporal axes impact ecology of the gut microbiome in juvenile European lobster (Homarus gammarus). The ISME Journal, 14: 531-543. | |
Kau A L, Ahern P P, Griffin N W, Goodman A L, Gordon J I. 2011. Human nutrition, the gut microbiome and the immune system. Nature, 474: 327-336. | |
Keddy P. 1999. Wetland restoration: The potential for assembly rules in the service of conservation. Wetlands, 19 (4): 716-732. | |
Khakisahneh S, Zhang X Y, Nouri Z, Wang D H. 2020. Gut microbiota and host thermoregulation in response to ambient temperature fluctuations. Msystems, 5: e00514-e005120. | |
Kohl K D, Skopec M M, Dearing M D. 2014. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conservation Physiology, 2 (1): cou009. | |
Ley R E, Hamady M, Lozupone C A, Turnbaugh P J, Ramey R R, Bircher J S, Schlegel M L, Tucker T A, Schrenzel M D, Knight R, Gordon J I. 2008. Evolution of mammals and their gut microbe. Science, 320: 1647-1651. | |
Li B, Gao H M, Song P F, Liang C B, Jiang F, Xu B, Liu D X, Zhang T Z. 2022. Captivity shifts gut microbiota communities in white lipped deer (Cervus albirostris). Animals, 12 (4): 431. | |
Li H, Li T T, Qu J P. 2018. Stochastic processes govern bacterial communities from the blood of pikas and from their arthropod vectors. FEMS Microbiol Ecology, 94 (6): 29722798. | |
Li Z W, Sun R Y. 1998. Seasonal reproductive cycles in male plateau pika (Ochotona curzoniae). Acta Theriologica Sinica, 18 (1): 42-49 | |
Liu C B, Hu J Y, Wu Y J, David M I, Chen W, Zhang Z J, Yu L. 2021. Comparative study of gut microbiota from captive and confiscated rescued wild pangolins. Journal of Genetics and Genomics, 48 (9): 825-835. | |
Langille M G I, Zaneveld J, Caporaso J G, McDonald D, Knights D, Reyes J A, Clemente J C, Burkepile D E, Vega Thurber R L, Knight R, Beiko R G, Huttenhower C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31: 814-821. | |
MacArthur R H, Wilson E O. 1967. The Theory of Island Biogeography. Princeton NJ: Princeton University Press. | |
Magoč T, Salzberg S L. 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27: 2957-2963. | |
Martin L B, Kidd L, Liebl A L, Coon C A. 2011. Captivity induces hyper-inflammation in the house sparrow (Passer domesticus). Journal of Experimental Biology, 214: 2579-2585. | |
Martínez‑Salinas A, DeClerck F, Vierling K, Vierling L, Legal L, Vílchez‑Mendoza S, Avelino J. 2016. Bird functional diversity supports pest control services in a Costa Rican coffee farm. Agriculture, Ecosystems & Environment, 235: 277-288. | |
McDonald D, Price M N, Goodrich J, Nawrocki E P, DeSantis T Z, Probst A, Andersen G L, Knight R, Hugenholtz P. 2012. An improved greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The ISME Journal, 6: 610-618. | |
Miller E A, Johnson T J, Omondi G, Atwill E R, Isbell L A, McCowan B, VanderWaal K. 2018. Assessing transmission of antimicrobial-resistant escherichia coli in wild giraffe contact networks. Applied Environmental Microbiology, 85 (1): e02136-18. | |
Moeller A H, Suzuki T A, Lin D, Lacey E A, Wasser S K, Nachman M W. 2017. Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proceeding of the National Academy of Sciences of the United States of America, 114 (52): 13768-13773. | |
Neuman H, Debelius J W, Knight R, Koren O. 2015. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiology Reviews, 39: 509-521. | |
Ofiţeru I D, Lunn M, Curtis T P, Wells G F, Criddle C S, Francis C A, Sloan W T. 2010. Combined niche and neutral effects in a microbial wastewater treatment community. Proceeding of the National Academy of Sciences of the United States of America, 107: 15345-15350. | |
Pearson D E, Ortega Y K, Eren Ö, Hierro J L. 2018. Community assembly theory as a framework for biological invasions. Trends in Ecology & Evolution, 33 (5): 313-325. | |
Pontarp M, Petchey O L. 2016. Community trait overdispersion due to trophic interactions: concerns for assembly process inference. Proceedings of the Royal Society B: Biological Sciences, 283: 20161729. | |
Peng Q H, Dai Q D, Bai X, Wang Z S, Hu R, Cao G, Li G Y, Wang L Z, Zou H W, Ma J, Zhu Y X. 2021. Comparative study of growth performance, nutrient digestibility, and ruminal and fecal bacterial community between yaks and cattle-yaks raised by stall-feeding. AMB Express, 11 (1): 98. | |
Redford K H, Jensen D B, Breheny J J. 2012. Integrating the captive and wild. Science, 338: 1157-1158. | |
Shao Y X. 2003. Laboratory Animals. Nanjing: Southeast University Press.(in Chinese) | |
Sloan W T, Lunn M, Woodcock S, Head I M, Nee S, Curtis T P. 2006. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environmental Microbiology, 8: 732-740. | |
Smith A T, Badingqiuying, Wilson M C, Hogan B W. 2019. Functional-trait ecology of the plateau pika Ochotona curzoniae in the Qinghai-Tibetan Plateau. Integrative Zoology, 14: 87-103. | |
Speakman J R, Chi Q S, Oldakowski L, Fu H B, Fletcher Q E, Hambly C, Togo J, Liu X Y, Piertney S B, Wang X H, Zhang L Z, Redman P, Wang L, Tang G B, Li Y G, Cui J G, Thomson P J, Wang Z L, Glover P, Robertson O C, Zhang Y M, Wang D H. 2021. Surviving winter on the Qinghai-Tibetan Plateau: pikas suppress energy demands and exploit yak feces to survive winter. Proceeding of the National Academy of Sciences of the United States of America, 118 (30): e2100707118. | |
Stegen J C, Fredrickson J K, Wilkins M J, Konopka A E, Nelson W C, Arntzen E V, Chrisler W B, Chu R K, Danczak R E, Fansler S J, Kennedy D W, Resch C T, Tfaily M. 2016. Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nature Communication, 7: 11237. | |
Tang G S, Liang X X, Yang M Y, Wang T T, Chen J P, Du W G, Li H, Sun B J. 2020. Captivity influences gut microbiota in Crocodile Lizards (Shinisaurus crocodilurus). Frontiers Microbiology, 11: 550. | |
Tang X J, Zhang L Z, Fan C, Wang L, Fu H B, Ren S E, Shen W J, Jia S G, Wu G F, Zhang Y M. 2021. Dietary fiber influences bacterial community assembly processes in the gut microbiota of Durco × Bamei crossbred pig. Frontiers Microbiology, 12: 688554. | |
Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. 2021. Prevotella diversity, niches and interactions with the human host. Nature Reviews Microbiology, 19: 585-599. | |
Turnbaugh P J, Ley R E, Mahowald M A, Magrini V, Mardis E R, Gordon J I. 2006. An obesity‑associated gut microbiome with increased capacity for energy harvest. Nature, 444: 1027-1031. | |
Tyakht A V, Kostryukova E S, Popenko A S, Belenikin M S, Pavlenko A V, Larin A K, Karpova I Y, Selezneva O V, Semashko T A, Ospanova E A, Babenko V V, Maev I V, Cheremushkin S V, Kucheryavyy Y A, Shcherbakov P L, Grinevich V B, Efimov O I, Sas E I, Abdulkhakov R A, Abdulkhakov S R, Lyalyukova E A, Livzan M A, Vlassov V V, Sagdeev R Z, Tsukanov V V, Osipenko M F, Kozlova I V, Tkachev A V, Sergienko V I, Alexeev D G, Govorun V M. 2013. Human gut microbiota community structures in urban and rural populations in Russia. Nature Communication, 4: 2469. | |
Volkov I, Banavar J R, Hubbell S P, Maritan A. 2003. Neutral theory and relative species abundance in ecology. Nature, 424: 1035-1037. | |
Weiher E, Freund D, Bunton T, Stefanski A, Lee T, Bentivenga S. 2011. Advances, challenges and a developing synthesis of ecological community assembly theory. Philosophical Transactions of the Royal Society B-Biological Sciences, 366: 2403-2413. | |
Wienemann T, Schmitt‑Wagner D, Meuser K, Segelbacher G, Schink B, Brune A, Berthold P.2011. The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Systematic Applied Microbiology, 34: 542-551. | |
Xiao G H, Liu S, Xiao Y H, Zhu Y, Zhao H B, Li A Q, Li Z L, Feng J. 2019. Seasonal changes in gut microbiota diversity and composition in the greater horseshoe bat. Frontiers in Microbiology, 10: 2247. | |
Xie H C, Luo Q Y, Chen Z, Ma Y G. Blood indices, blood gas, and sex hormones in plateau pika (Ochotona curzoniae) during breeding season. Chinese Journal of Wildlife, 38 (2): 205-214.(in Chinese) | |
Yachi S, Loreau M.1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceeding of the National Academy of Sciences of the United States of America, 96 (4): 1463-1468. | |
Yan Q Y, Li J J, Yu Y H, Wang J J, He Z L, Nostrand J D V, Kempher M L, Wu L Y, Wang Y P, Liao L J, Li X H, Wu S, Ni J J, Wang C, Zhou J Z. 2016. Environmental filtering decreases with fish development for the assembly of gut microbiota. Environmental Microbiology, 18: 4739-4754. | |
Yu Q L, Li G L, Li H. 2022. Two community types occur in gut microbiota of large‑sample wild plateau pikas (Ochotona curzoniae). Integrative Zoology, 17: 366-378. | |
Zheng Q, Lin Y H. 1996. General situation about laboratory of wild animal. Endemic Diseases Bulletin, 11: 83-87.(in Chinese) | |
Zhou J Z, Ning D L. 2017. Stochastic community assembly: does It matter in microbial ecology? Microbiology and Molecular Biology Reviews, 81 (4): e00002-17. | |
贺争鸣. 2010. 我国资源动物的实验动物化潜力与展望. 中国比较医学杂志, 20: 1-7. | |
邵义祥. 2003. 医学实验动物学教程. 南京: 东南大学出版社. | |
谢惠春, 罗巧玉, 陈志, 马永贵. 2017. 高原鼠兔繁殖季节血液指标、血气及性激素变化. 野生动物学报, 38 (2): 205-214. | |
郑 强, 林永红. 1996. 野生动物实验动物化的研究概况. 地方病通报, 11: 83-87. |
[1] | DONG Xin, CHEN Huiqing, ZHANG Lu, SHANG Guozhen, WU Yan, BIAN Jianghui. Effects of methionine contents in food on the gut microbiota of plateau pika [J]. ACTA THERIOLOGICA SINICA, 2024, 44(4): 411-426. |
[2] | WANG Yujun, ZHANG Xiaoqian, FANG Yougui, YANG Qien, JIA Gongxue. Characteristics of sex hormone level and sex organ histology in estrus cycle of plateau pika (Ochotona curzoniae) [J]. ACTA THERIOLOGICA SINICA, 2024, 44(3): 351-359. |
[3] | ZHANG Jiayu, AN Zhifang, WANG Zhijie, CHEN Xiaoqi, WEI Dengbang. Inhibition of bile acid metabolism in plateau zokor (Myospalax baileyi) and plateau pika (Ochotona curzoniae) in high-altitude environments [J]. ACTA THERIOLOGICA SINICA, 2023, 43(5): 553-567. |
[4] | Xueqin WU, Huiqing CHEN, Lu ZHANG, Guozhen SHANG, Yan WU, Jianghui BIAN. Grassland degradation affects serum total IgG level, intestinal parasitic infection and liver and kidney indices of plateau pika [J]. ACTA THERIOLOGICA SINICA, 2022, 42(5): 531-539. |
[5] | Hongjuan ZHU, Jing LI, Suqin WANG, Qi TANG, Xianyong LAN, Jiapeng QU. Association between personality and SERT gene polymorphisms in plateau pikas (Ochotona curzoniae) at different altitudes [J]. ACTA THERIOLOGICA SINICA, 2022, 42(5): 540-552. |
[6] | Xuze ZHANG, Lin FU, Xiaoyan ZOU, Yurong DU. Expression analysis of gap junction protein 40 in lung of plateau pika exposed to hypoxia [J]. ACTA THERIOLOGICA SINICA, 2022, 42(5): 572-578. |
[7] | FAN Chao, ZHANG Liangzhi, FU Haibo, LIU Chuanfa, LI Wenjing, ZHANG He, TANG Xianjiang, CHENG Qi, SHEN Wenjuan, ZHANG Yanming. Seasonality of abundant and rare taxa in gut microbiota of plateau pikas [J]. ACTA THERIOLOGICA SINICA, 2021, 41(6): 617-630. |
[8] | HUA Xianze, ZHOU Rui, YE Guohui, HUA Rui, Baodaerhan, HUA Limin. The temporal distribution of the long call and its influencing factors in male plateau pika (Ochotona curzoniae) [J]. ACTA THERIOLOGICA SINICA, 2020, 40(6): 606-614. |
[9] | LI Shuang, ZOU Xiaoyan, FU Lin, LIU Zhonghao, BAI Xianghui, DU Yurong, GUO Songchang. A comparative study on pulmonary histochemical characteristics between plateau pika and Kunming mouse [J]. ACTA THERIOLOGICA SINICA, 2020, 40(2): 162-169. |
[10] | TAN Chuntao, YU Yibo, JIANG Zhanping, ZHONG Liang, ZHANG Yanming, QU Jiapeng. Differences in exploration and resting metabolic rates of plateau pikas (Ochotona curzoniae) at different altitudes [J]. ACTA THERIOLOGICA SINICA, 2020, 40(1): 27-36. |
[11] | WANG Yujun, JIA Gongxue, WANG Ting, WANG Xiurong, LIU Zhonghao, DU Yurong, MA Jianbin. Photoperiod-melatonin signal regulates seasonal spermatogenesis in plateau pikas(Ochotona curzoniae) [J]. ACTA THERIOLOGICA SINICA, 2020, 40(1): 54-63. |
[12] | HOU Chu, SHANG Guozhen, WU Xueqin, CAO Yifan, CHEN Jiahui, BIAN Jianghui. Comparative studies on food habit analysis of gastric contents and colon contents of plateau pika(Ochotona curzoniae) [J]. ACTA THERIOLOGICA SINICA, 2019, 39(6): 662-669. |
[13] | XU Hualei, WANG Xi, LIU Wei. Effects of disturbance of plateau pika(Ochotona curzoniae) on plant community in alpine meadow under grazing condition [J]. ACTA THERIOLOGICA SINICA, 2019, 39(5): 537-545. |
[14] | PANG Bo, YU Honghao, ZHANG Xuze, XIE Ling, FU Lin, ZHAO Xinquan, GUO Songchang. Construction of mammary gland-specific expression vector for plateau pika(Ochotona curzoniae)Leptin gene and its expression in cells [J]. ACTA THERIOLOGICA SINICA, 2019, 39(1): 84-93. |
[15] | XU Hualei, YAN Hongyu, DENG Teng, ZHANG Rui, LIU Wei. Impact of plateau pikas(Ochotona curzoniae)on Elymus nutans and legume plant physiological properties in alpine meadow [J]. ACTA THERIOLOGICA SINICA, 2018, 38(2): 148-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||