ACTA THERIOLOGICA SINICA ›› 2022, Vol. 42 ›› Issue (1): 58-68.DOI: 10.16829/j.slxb.150584
• ORIGINAL PAPERS • Previous Articles Next Articles
Daliang HUO, Shasha LIAO, Jing CAO, Zhijun ZHAO()
Received:
2021-07-07
Accepted:
2021-09-21
Online:
2022-01-30
Published:
2022-01-13
Contact:
Zhijun ZHAO
通讯作者:
赵志军
作者简介:
霍达亮 (1995- ),男,硕士研究生,主要从事动物生理生态学研究.
基金资助:
CLC Number:
Daliang HUO, Shasha LIAO, Jing CAO, Zhijun ZHAO. The energy budget of striped hamsters in response to food shortage at different temperatures[J]. ACTA THERIOLOGICA SINICA, 2022, 42(1): 58-68.
霍达亮, 廖莎莎, 曹静, 赵志军. 不同温度下黑线仓鼠应对食物短缺的能量学对策[J]. 兽类学报, 2022, 42(1): 58-68.
Fig. 1 The timeline of striped hamsters subjected to food deprivation and refeeding at 5.0℃, 21.0℃ and 32.5℃. DMR: Daily metabolic rate; Tb: Body temperature; RMR: Resting metabolic rate; NST: Nonshivering thermogenesis; TH: Thyroid hormones; DEI: Digestible energy intake. Body mass and food intake were measured before food deprivation and ad libitum refeeding
Fig. 2 Body temperature (Tb) (A), and average Tb during light and dark phases (B and C, mean ± SE) of striped hamsters subjected to food deprivation at 5.0℃, 21.0℃ and 32.5℃. day 0, before food deprivation; FD: day 1, day 2, the first and second day of food deprivation. * significant effect of temperature on Tb (P < 0.05)
Fig. 3 Body mass (A), and daily food intake (B) of striped hamsters subjected to food deprivation and refeeding at 5.0℃, 21.0℃ and 32.5℃ (mean ± SE). FD: food deprivation; Re: refeeding. ** significant effect of temperature on daily food intake (P < 0.01)
Fig. 4 Gross energy intake (GEI, A), digestive energy intake (DEI, B), gross energy of feces (GEF, C) and digestibility (D) of striped hamsters subjected to food deprivation and refeeding at 5.0℃, 21.0℃and 32.5℃ (means ± SE). Different letters above the columns indicate significant difference between groups (P < 0.05)
Fig. 5 The metabolic rate (MR) during food deprivation (A) and refeeding (B) of striped hamsters at 5.0℃, 21.0℃ and 32.5℃. Data are means (A, B) or mean ± SE (C, D). FD: day 1, day 2, the first and second day of food deprivation. Ptem**, significant effect of temperature (P < 0.01)
Fig. 6 Resting metabolic rate (RMR) (A) and nonshivering thermogenesis (NST) (B) during refeeding of striped hamsters at 5.0℃, 21.0℃ and 32.5℃ (mean ± SE). Different letters above the columns indicate significant difference between groups (P < 0.05)
Fig. 7 The mass of fat deposit of striped hamsters subjected to food deprivation and refeeding at 5.0℃, 21.0℃ and 32.5℃ (mean ± SE). BAT: Brown adipose tissue. PFD means significant effect of food deprivation; Ptem means significant effect of temperature. **, P < 0.01
Fig. 8 Serum T3 (A), T4 (B) and T3/T4 (C) of striped hamsters subjected to food deprivation and refeeding at 5.0℃, 21.0℃ and 32.5℃(mean ± SE). PFD means significant effect of food deprivation; Ptem means significant effect of temperature. * P < 0.05; ** P < 0.01
Cui Z Q, Liu X Y, Song S Y, Yang M. 2019. The characteristics of metabolism and thermoregulation of Microtus gregalis. Acta Theriologica Sinica, 39: 295-301. (in Chinese) | |
Freake H C, Oppenheimer J H. 1995. Thermogenesis and thyroid function. Annual Review of Nutrition, 15: 263-291. | |
Gutman R, Choshniak I, Kronfeld-Schor N. 2006. Defending body mass during food restriction in Acomysru ssatus: a desert rodent that does not store food. American Journal of Physiology, 290: R881-891. | |
Gutman R, Yosha D, Choshniak I, Kronfeld-Schor N. 2007. Two strategies for coping with food shortage in desert golden spiny mice. Physiology & Behavior, 90: 95-102. | |
Hambly C, Speakman J R. 2005. Contribution of different mechanisms to compensation for energy restriction in the mouse. Obesity Research, 13: 1548-1557. | |
Heldmaier G. 1971. Nonshivering thermogenesis and body size in mammals. Journal of Comparative Physiology, 73: 222-248. | |
Jefimow M, Wojciechowski M, Tegowska E. 2004. Seasonal and daily changes in the capacity for nonshivering thermogenesis in the golden hamsters housed under semi-natural conditions. Comparative Biochemistry and Physiology A, 137: 297-309. | |
Khakisahneh S, Zhang X Y, Nouri Z, Hao S Y, Chi Q S, Wang D H. 2019. Thyroid hormones mediate metabolic rate and oxidative, anti-oxidative balance at different temperatures in Mongolian gerbils (Meriones unguiculatus). Comparative Biochemistry and Physiology Part C, 216: 101-109. | |
Lanni A, Moreno M, Lombardi A, Goglia F. 2003. Thyroid hormone and uncoupling proteins. FEBS Letters, 543 (1-3): 5-10. | |
Li X C, Gong X N, Zhang H, Zhu W L. 2020. Effects of food restriction on energy metabolism in male Apodemus chevrieri from Hengduan Mountain region of China. Indian Journal of Animal Research, 54: 419-423 | |
Liu Q S, Wang D H. 2007. Effects of diet quality on phenotypic flexibility of organ size and digestive function in Mongolian gerbils (Meriones unguiculatus). Comparative Biochemistry and Physiology Part B, 177: 509-518. | |
Martínez-Sánchez N, Moreno-Navarrete J M, Contreras C, Rial-Pensado E, Fernø J, Nogueiras R, Diéguez C, Fernández J, López M. 2017. Thyroid hormones induce browning of white fat. Journal of Endocrinology, 232 (2): 351-362. | |
Merkt J, Taylor C R. 1994. A metabolic switch for desert survival. Proceedings of the National Academy of Sciences of the United States of America, 91: 12313-12316. | |
Naya D E, Eloso C, Sabat P, Bozinovic F. 2011. Physiological flexibility and climate change: The case of digestive function regulation in lizards. Comparative Biochemistry and Physiology Part A, 159 (1): 100-104. | |
Nespolo R F, Bacigalupe L D, Rezende E L, Bozinovic F. 2001. When nonshivering thermogenesis equals maximum metabolic rate: thermal acclimation and phenotypic plasticity of fossorial Spalacopus cyanus (Rodentia). Physiological and Biochemical Zoology, 74 (3): 325-332. | |
Nespolo R F, Franco M. 2007. Whole-animal metabolic rate is a repeatable trait: a meta-analysis. The Journal of Experimental Biology, 210: 2000-2005. | |
Park I R, Mount D B, Himms-Hagen J. 1989. Role of T3 in thermogenic and trophic responses of brown adipose tissue to cold. American Journal of Physiology,257(Pt1): E81-87. | |
Silva J E. 2006. Thermogenic mechanisms and their hormonal regulation. Physiological Reviews, 86: 435-464. | |
Song Z G, Wang D H. 2003. Metabolism and thermoregulation in the striped hamster Cricetulus barabensis. Journal of Thermal Biology, 28: 509-514. | |
Speakman J R, Hambly C. 2007. Starving for Life: What animal studies can and cannot tell us about the use of caloric restriction to prolong human lifespan. The Journal of Nutrition, 137: 1078-1086. | |
Speakman J R, Mitchell S E. 2011. Caloric restriction. Molecular Aspects of Medicine, 32: 159-221. | |
Wallace M E. 1976. Effects of stress due to deprivation and transport in different genotypes of house mouse. Laboratory Animals, 10: 335-347. | |
Wang D H. 2011. Some progress in mammalian physiological ecology in China. Acta Theriologica Sinica, 31 (1): 15-19. (in Chinese) | |
Wang D H, Wang Z W. 1996. Seasonal variations on thermogenesis and energy requirements of plateau pikas Ochotona curzoniae and root voles Microtus oeconomus. Acta Theriologica, 41: 225-236. | |
Wen J, Tan S, Wang D H, Zhao Z J. 2018a. Variation of food availability affects male striped hamsters (Cricetulus barabensis) with different levels of metabolic rate. Integrative Zoology, 13: 769-782. | |
Wen J, Tan S, Qiao Q, Shi L, Huang Y, Zhao Z. 2018b. The strategies of behavior, energetic and thermogenesis of striped hamsters in response to food deprivation. Integrative Zoology, 13: 70-83. | |
Williams T D, Chambers J B, Henderson R P. 2002. Cardiovascular responses to caloric restriction and thermoneutrality in C57BL/6J mice. American Journal of Physiology, 282: R1459-1467. | |
Yu J X, Deng G M, Bao Y F, Zhao Z J. 2020. The adaptive regulations of energy metabolism and fat accumulation during post lactation in striped hamster. Acta Theriologica Sinica, 40 (6): 595-605. (in Chinese) | |
Zhang J Y, Zhao X Y, Wen J, Tan S, Zhao Z J. 2016. Plasticity in gastrointestinal morphology and enzyme activity in lactating striped hamsters (Cricetulus barabensis). Journal of Experimental Biology,219(Pt9): 1327-1336. | |
Zhang L, Liu P F, Zhu W L, Cai J H, Wang Z K. 2012. Variations in thermal physiology and energetics of the tree shrew (Tupaia belangeri) in response to cold acclimation. Journal of Comparative Physiology B, 182 (1): 167-176. | |
Zhang Z B, Wang Z W. 1998. Ecology and Management of Rodent Pests in Agriculture. Beijing: Ocean Press. (in Chinese) | |
Zhao Z J, Cao J, Liu Z C, Wang G Y, Li L S. 2010. Seasonal regulations of resting metabolic rate and thermogenesis in striped hamster (Cricetulus barabensis). Journal of Thermal Biology, 35: 401-405. | |
Zhao Z J, Cao J, Wang G Y, Ma F, Meng X L. 2009a. Effect of random food deprivation and re-feeding on energy metabolism and behavior in mice. Acta Theriologica Sinica, 29 (3): 277-285. (in Chinese) | |
Zhao Z J, Cao J, Chen K X. 2014. Seasonal changes in body mass and energy budget in striped hamsters. Acta Theriologica Sinica, 34 (2): 149-157. (in Chinese) | |
Zhao Z J, Wang R R, Cao J, Pei L Y. 2009b. Effect of random food deprivation and refeeding on energy budget and development in mice. Zoological Research, 30 (5): 534-538. (in Chinese) | |
Zhao Z J. 2012. Effect of food restriction on energy metabolism and thermogenesis in striped hamster. Acta Theriologica Sinica, 32 (4): 297-305. (in Chinese) | |
王德华. 2011. 我国哺乳动物生理生态学的一些进展和未来发展的建议. 兽类学报, 31 (1): 15-19. | |
余静欣, 邓光敏, 鲍雨帆, 赵志军. 2020. 黑线仓鼠断乳后能量代谢和脂肪累积的适应性调节. 兽类学报, 40 (6): 595-605. | |
张知彬, 王祖望. 1998. 农业重要害鼠的生态学及控制对策. 北京: 海洋出版社. | |
赵志军, 曹静, 王桂英, 马飞, 孟喜龙. 2009a. 随机饥饿和重喂食对小鼠能量代谢和行为的影响. 兽类学报, 29 (3): 277-285. | |
赵志军, 王瑞瑞, 曹静, 裴兰英. 2009b. 随机限食和重喂食小鼠能量收支和生长发育的可塑性. 动物学研究, 30 (5): 534-538. | |
赵志军, 曹静, 陈可新. 2014. 黑线仓鼠体重和能量代谢的季节性变化. 兽类学报, 34 (2): 149-157. | |
赵志军. 2012. 食物限制对黑线仓鼠能量代谢和产热的影响.兽类学报, 32 (4): 297-305. | |
崔志强, 刘新宇, 宋士一, 杨明. 2019. 狭颅田鼠的代谢特征及体温调节. 兽类学报, 39 (3): 295-301. |
[1] | LU Zhantao, LAN Guanwei, LI Ruiyuan, SI Xurui, LIU Xingyu, MO Cheng, YAO Hui, QI Dun, XIANG Zuofu. The impact of climate on the birth pattern of Rhinopithecus roxellana in different regions [J]. ACTA THERIOLOGICA SINICA, 2024, 44(1): 26-36. |
[2] | ZHANG Ruihan, LUO Dan, LUO Xinxin, HU Chenxiao, LIN Long, CHEN Qian, CAO Jing, ZHAO Zhijun. Effect of exposure to high temperature on energy metabolism and oxidative stress in striped hamsters [J]. ACTA THERIOLOGICA SINICA, 2023, 43(6): 710-722. |
[3] | LI Hongjuan, WANG Dehua, WANG Zhenshan, ZHANG Xueying. High temperature during lactation shortens the thermoneutral zone in the F1 generation of Brandt’s voles (Lasiopodomys brandtii) [J]. ACTA THERIOLOGICA SINICA, 2023, 43(4): 412-421. |
[4] | LYU Jinzhen, TANG Liqiu, ZHANG Xueying, WANG Dehua. Effect of temperature acclimation on thermosensitive transient receptor potential channels of liver in Brandt’s voles (Lasiopodomys brandtii) [J]. ACTA THERIOLOGICA SINICA, 2023, 43(1): 1-10. |
[5] | CHI Qingsheng, LUO Huining, YAO Xiaogang, LI Guangrong, YANG Changqian, ZHANG Qiang, LIU Yuhang, LIU Quansheng. Effects of a high-fiber diet on energy metabolism in Niviventer lotipes [J]. ACTA THERIOLOGICA SINICA, 2023, 43(1): 11-20. |
[6] | CHEN Huibao, JIA Ting, ZHANG Di, ZHANG Hao, WANG Zhengkun, ZHU Wanlong. Effects of exogenous leptin injection on adaptive thermogenesis in Eothenomys miletus between Kunming and Dali regions [J]. ACTA THERIOLOGICA SINICA, 2023, 43(1): 21-32. |
[7] | Dehua WANG, Zuwang WANG. Physiological Ecology of Small Mammals in Qinghai‒Tibetan Plateau: from individual to ecosystem [J]. ACTA THERIOLOGICA SINICA, 2022, 42(5): 482-489. |
[8] | Yifan CAO, Guozhen SHANG, Wenjing LI, Yuangang YANG, Tong WU, Yahui ZHU, Jianghui BIAN, Ruiqiang ZHANG, Tongzuo ZHANG, Xinquan ZHAO. Risk of transmission and infection of gastrointestinal parasites in the Tibetan antelope (Pantholops hodgsonii) aggregation [J]. ACTA THERIOLOGICA SINICA, 2022, 42(5): 563-571. |
[9] | YU Yi, ZHAO Mingxing, WANG Yuhui, ZHANG Xueying, XU Deli, WANG Dehua. Effect of feeding peanut on cellular immunity and hematological profiles in non-reproductive female striped hamsters (Cricetulus barabensis) [J]. ACTA THERIOLOGICA SINICA, 2022, 42(3): 286-294. |
[10] | Manduhu, YUAN Shuai, YANG Suwen, JI Yu, Chaoketu, WEI Jun, FU Heping, WU Xiaodong. Activity pattern of Transbaikal zokor(Myospalax psilurus) and its relationship with soil temperature and humidity [J]. ACTA THERIOLOGICA SINICA, 2021, 41(4): 441-450. |
[11] | XU Deli, HU Xiaokai, TIAN Yufen, WANG Dehua. Seasonal changes in immune function in female striped hamsters [J]. ACTA Theriologica Sinica, 2021, 41(2): 182-192. |
[12] | YU Jingxin, DENG Guangmin, BAO Yufan, ZHAO Zhijun. The adaptive regulations of energy metabolism and fat accumulation during post-lactation in striped hamster [J]. ACTA THERIOLOGICA SINICA, 2020, 40(6): 595-605. |
[13] | TIAN Shuangjie, ZHANG Xueying, LIU Wei, WANG Dehua. The relationship between hoarding behavior and personality and metabolism in Mongolian gerbils(Meriones unguiculatus) [J]. ACTA THERIOLOGICA SINICA, 2020, 40(4): 307-316. |
[14] | TAN Chuntao, YU Yibo, JIANG Zhanping, ZHONG Liang, ZHANG Yanming, QU Jiapeng. Differences in exploration and resting metabolic rates of plateau pikas (Ochotona curzoniae) at different altitudes [J]. ACTA THERIOLOGICA SINICA, 2020, 40(1): 27-36. |
[15] | BI Zhongqiang, WEN Jing, SHI Lulu, TAN Song, XU Xiaoming, ZHAO Zhijun. Effects of temperature and high-fat diet on metabolic thermogenesis and body fat content in striped hamsters [J]. ACTA THERIOLOGICA SINICA, 2018, 38(4): 384-392. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||