ACTA THERIOLOGICA SINICA ›› 2025, Vol. 45 ›› Issue (6): 784-796.DOI: 10.16829/j.slxb.151036
• REVIEWS • Previous Articles Next Articles
Yongqiao HUANG1, Chengyun ZHANG1, Zixin ZHANG1, Zezhou HAO2(
)
Received:2024-12-06
Accepted:2025-04-21
Online:2025-11-30
Published:2025-12-03
Contact:
Zezhou HAO
通讯作者:
郝泽周
作者简介:黄泳桥 (1996- ),女,硕士研究生,主要从事声学分析处理研究.
基金资助:CLC Number:
Yongqiao HUANG, Chengyun ZHANG, Zixin ZHANG, Zezhou HAO. Advancements and prospects of software for processing and analyzing terrestrial mammal sound data[J]. ACTA THERIOLOGICA SINICA, 2025, 45(6): 784-796.
黄泳桥, 张承云, 张梓欣, 郝泽周. 陆生哺乳动物声音数据处理分析软件进展与展望[J]. 兽类学报, 2025, 45(6): 784-796.
Fig. 4 Typical workflow for animal sound recognition using deep learning. The left side of the diagram corresponds to most recognition task processes, while the developer involved in model construction is present throughout the entire process
软件名称 Software name | 用户界面 Interface | 描述 Description | 识别分类算法 Classifier | 降噪处理 Denoise method | 标注 Annotation | 操作系统OS | 硬件要求* Software requirement | 费用 Access | 访问链接 URL |
|---|---|---|---|---|---|---|---|---|---|
| Avisoft-SASLab Pro | 用户友好图形界面 User-friendly GUI | 声音分析、编辑和合成 Sound analysis, editing, and synthesis | 自动和手动分类 Automatic and manual classifier | 滤波器降噪 Filter denoising | 支持设置标签 Set label | Windows | 中等 Medium | 商业软件 Commercial | http://www.avisoft.com/sound-analysis |
| BatExplorer | 用户友好图形界面 User-friendly GUI | 蝙蝠声音分析 Bat sound analysis | 自动分类 Automatic classifier | — | 声谱图注释 Spectrum annotation | Windows | 中等 Medium | 免费软件 Free | https://www.batlogger.com/en/downloads/batexplorer/ |
| Anabat Insight | 用户友好图形界面 User-friendly GUI | 蝙蝠声音分析 Bat sound analysis | 自动蝙蝠呼叫声音 分类,决策树 Automatic bat call classifier,decision tree | 频谱图降噪 Spectrum denoising | 支持设置标签 Set label | Windows, Mac | 中等 Medium | 免费软件 Free | https://www. titley-scientific.com/support/software/ |
| AviaNZ | 用户友好图形界面 User-friendly GUI | 鸟类声音分析 Bird sound analysis | 小波识别器, CNN Wavelet recognizer, CNN | 小波降噪,滤波器降噪 Wavelet denoising, filter denoising | 详细的标注功能 Detailed annotation function | Windows, Mac,Linux | 高 High | 免费开源 Free & open source | http://www.avianz.net/index.php |
| Kaleidoscope | 用户友好图形界面 User-friendly GUI | 动物声音分析 Animal sound analysis | 无监督学习模型, HMM Unsupervised, HMM | 小波降噪,滤波器降噪 Wavelet denoising, filter denoising | 手动标记叫声 Manually mark the call sound | Windows, Mac,Linux | 中等 Medium | 商业软件 Commercial | https://www. wildlifeacoustics. com/products/ kaleidoscope-pro |
| Raven Pro | 用户友好图形界面 User-friendly GUI | 声音分析和可视化 Sound analysis and visualization | CNN模型, BirdNET CNN model, BirdNET | — | 直观的频谱图标注 Intuitive spectrum annotation | Windows, Mac,Linux | 中等 Medium | 商业软件 Commercial | https://ravensoundsoftware.com/software/raven-pro |
| ARBIMON | 用户友好图形界面 User-friendly GUI | 生态声学监测 Ecological acoustic monitoring | 随机森林模型 Random forest model | — | — | WEB | 云端型 Cloud-Based | 免费软件 Free | https://arbimon. rfcx.org |
| Koe | 用户友好图形界面 User-friendly GUI | 可视化、分割和分类动物声音 Visualize, segment, and classify animal sounds | 交互式的人工分类方法 Interactive manual classification method | — | 注释检测 Annotation detection | WEB | 云端型 Cloud-Based | 免费软件 Free | https://koe.io.ac.nz |
| Tadarida | 用户友好图形界面 User-friendly GUI | 动物声音分析 Animal sound analysis | 随机森林模型 Random forest model | — | Tadarida-L注释 Use Tadarida-L annotation | R 环境 | 高 High | 免费开源 Free & open source | https://github.com/YvesBas/Tadarida-C |
| warbleR | 命令行 CLI | 动物声音结构分析 Analysis of animal sound structure | — | — | 支持设置标签 Set label | R 环境 | 基础 Basic | 免费开源 Free & open source | https://cran.r-project.org/web/packages/warbleR/index.html |
| OpenSoundscape | 命令行 CLI | 生态声学分析 Ecological acoustic analysis | CNN | — | 读取Raven标签, 编辑与创建标签 Read Raven tags, edit and create tags | Python 环境 | 高 High | 免费开源 Free & open source | http://opensoundscape.org |
Table 1 Comprehensive acoustic integration software functionality matrix
软件名称 Software name | 用户界面 Interface | 描述 Description | 识别分类算法 Classifier | 降噪处理 Denoise method | 标注 Annotation | 操作系统OS | 硬件要求* Software requirement | 费用 Access | 访问链接 URL |
|---|---|---|---|---|---|---|---|---|---|
| Avisoft-SASLab Pro | 用户友好图形界面 User-friendly GUI | 声音分析、编辑和合成 Sound analysis, editing, and synthesis | 自动和手动分类 Automatic and manual classifier | 滤波器降噪 Filter denoising | 支持设置标签 Set label | Windows | 中等 Medium | 商业软件 Commercial | http://www.avisoft.com/sound-analysis |
| BatExplorer | 用户友好图形界面 User-friendly GUI | 蝙蝠声音分析 Bat sound analysis | 自动分类 Automatic classifier | — | 声谱图注释 Spectrum annotation | Windows | 中等 Medium | 免费软件 Free | https://www.batlogger.com/en/downloads/batexplorer/ |
| Anabat Insight | 用户友好图形界面 User-friendly GUI | 蝙蝠声音分析 Bat sound analysis | 自动蝙蝠呼叫声音 分类,决策树 Automatic bat call classifier,decision tree | 频谱图降噪 Spectrum denoising | 支持设置标签 Set label | Windows, Mac | 中等 Medium | 免费软件 Free | https://www. titley-scientific.com/support/software/ |
| AviaNZ | 用户友好图形界面 User-friendly GUI | 鸟类声音分析 Bird sound analysis | 小波识别器, CNN Wavelet recognizer, CNN | 小波降噪,滤波器降噪 Wavelet denoising, filter denoising | 详细的标注功能 Detailed annotation function | Windows, Mac,Linux | 高 High | 免费开源 Free & open source | http://www.avianz.net/index.php |
| Kaleidoscope | 用户友好图形界面 User-friendly GUI | 动物声音分析 Animal sound analysis | 无监督学习模型, HMM Unsupervised, HMM | 小波降噪,滤波器降噪 Wavelet denoising, filter denoising | 手动标记叫声 Manually mark the call sound | Windows, Mac,Linux | 中等 Medium | 商业软件 Commercial | https://www. wildlifeacoustics. com/products/ kaleidoscope-pro |
| Raven Pro | 用户友好图形界面 User-friendly GUI | 声音分析和可视化 Sound analysis and visualization | CNN模型, BirdNET CNN model, BirdNET | — | 直观的频谱图标注 Intuitive spectrum annotation | Windows, Mac,Linux | 中等 Medium | 商业软件 Commercial | https://ravensoundsoftware.com/software/raven-pro |
| ARBIMON | 用户友好图形界面 User-friendly GUI | 生态声学监测 Ecological acoustic monitoring | 随机森林模型 Random forest model | — | — | WEB | 云端型 Cloud-Based | 免费软件 Free | https://arbimon. rfcx.org |
| Koe | 用户友好图形界面 User-friendly GUI | 可视化、分割和分类动物声音 Visualize, segment, and classify animal sounds | 交互式的人工分类方法 Interactive manual classification method | — | 注释检测 Annotation detection | WEB | 云端型 Cloud-Based | 免费软件 Free | https://koe.io.ac.nz |
| Tadarida | 用户友好图形界面 User-friendly GUI | 动物声音分析 Animal sound analysis | 随机森林模型 Random forest model | — | Tadarida-L注释 Use Tadarida-L annotation | R 环境 | 高 High | 免费开源 Free & open source | https://github.com/YvesBas/Tadarida-C |
| warbleR | 命令行 CLI | 动物声音结构分析 Analysis of animal sound structure | — | — | 支持设置标签 Set label | R 环境 | 基础 Basic | 免费开源 Free & open source | https://cran.r-project.org/web/packages/warbleR/index.html |
| OpenSoundscape | 命令行 CLI | 生态声学分析 Ecological acoustic analysis | CNN | — | 读取Raven标签, 编辑与创建标签 Read Raven tags, edit and create tags | Python 环境 | 高 High | 免费开源 Free & open source | http://opensoundscape.org |
| Alcocer I, Lima H, Sugai L S M, Llusia D. 2022. Acoustic indices as proxies for biodiversity: a meta‐analysis [J]. Biological Reviews, 97 (6): 2209-2236. | |
| Allen‑Ankins S, McKnight D T, Nordberg E J, Hoefer S, Roe P, Watson D M, McDonald P G, Fuller R A, Schwarzkopf L. 2023. Effectiveness of acoustic indices as indicators of vertebrate biodiversity [J]. Ecological Indicators, 147: 109937. DOI: 10.1016/j.ecolind.2023.109937 . | |
| Barroso V R, Xavier F C, Ferreira C E L. 2023. Applications of machine learning to identify and characterize the sounds produced by fish [J]. ICES Journal of Marine Science, 80 (7): 1854-1867. | |
| Bonet‑Solà D, Alsina‑Pagès R M. 2021. A comparative survey of feature extraction and machine learning methods in diverse acoustic environments [J]. Sensors, 21 (4): 1274. DOI: 10.3390/s21041274 . | |
| Bota G, Manzano‑Rubio R, Catalán L, Gómez‑Catasús J, Pérez‑Granados C. 2023. Hearing to the unseen: AudioMoth and BirdNET as a cheap and easy method for monitoring cryptic bird species [J]. Sensors, 23 (16): 7176. DOI: 10.3390/s23167176 . | |
| Bota G, Manzano‑Rubio R, Fanlo H, Franch N, Brotons L, Villero D, Devisscher S, Pavesi A, Cavaletti E, Pérez‑Granados C. 2024. Passive acoustic monitoring and automated detection of the American bullfrog [J]. Biological Invasions, 26 (4): 1269-1279. | |
| Brabant R, Laurent Y, Dolap U, Degraer S, Poerink B. 2018. Comparing the results of four widely used automated bat identification software programs to identify nine bat species in coastal Western Europe [J]. Belgian Journal of Zoology, 148 (2). DOI: 10.26496/bjz.2018.21 . | |
| Bradfer‑Lawrence T, Bunnefeld N, Gardner N, Willis S G, Dent D H. 2020. Rapid assessment of avian species richness and abundance using acoustic indices [J]. Ecological Indicators, 115: 106400. DOI: 10.1016/j.ecolind.2020.106400 . | |
| Brinkløv S M M, Macaulay J, Bergler C, Tougaard J, Beedholm K, Elmeros M, Madsen P T. 2023. Open‐source workflow approaches to passive acoustic monitoring of bats [J]. Methods in Ecology and Evolution, 14 (7): 1747-1763. | |
| Brooker S A, Stephens P A, Whittingham M J, Willis S G. 2020. Automated detection and classification of birdsong: an ensemble approach [J]. Ecological Indicators, 117: 106609. DOI: 10.1016/j.ecolind.2020.106609 . | |
| Brown A, Garg S, Montgomery J. 2017. Automatic and efficient denoising of bioacoustics recordings using mmse stsa [J]. IEEE Access, 6: 5010-5022. | |
| Brown C, Riede T. 2017. Comparative Bioacoustics: An Overview [M]. Bentham Science Publishers. | |
| Buxton R T, McKenna M F, Clapp M, Meyer E, Stabenau E, Angeloni L M, Crooks K, Wittemyer G. 2018. Efficacy of extracting indices from large‑scale acoustic recordings to monitor biodiversity [J]. Conservation Biology, 32 (5): 1174-1184. | |
| Campos I B, Fewster R, Landers T, Truskinger A, Towsey M, Roe P, Lee W, Gaskett A. 2022. Acoustic region workflow for efficient comparison of soundscapes under different invasive mammals’ management regimes [J]. Ecological Informatics, 68: 101554. DOI: 10.1016/j.ecoinf.2022.101554 . | |
| Caouette A P, Bayne E M, Judge K A. 2024. Large‐scale bioacoustic monitoring to elucidate the distribution of a non‑native katydid [J]. Ecological Entomology, 49 (1): 119-127. | |
| Digby A, Towsey M, Bell B D, Teal P D. 2013. A practical comparison of manual and autonomous methods for acoustic monitoring [J]. Methods in Ecology and Evolution, 4 (7): 675-683. | |
| Dufourq E, Durbach I, Hansford J P, Hoepfner A, Ma H, Bryant J V, Stender C S, Li W, Liu Z, Chen Q. 2021. Automated detection of Hainan gibbon calls for passive acoustic monitoring [J]. Remote Sensing in Ecology and Conservation, 7 (3): 475-487. | |
| Fairbrass A J, Firman M, Williams C, Brostow G J, Titheridge H, Jones K E. 2019. CityNet-Deep learning tools for urban ecoacoustic assessment [J]. Methods in Ecology and Evolution, 10 (2): 186-197. | |
| Fern M, Barlow R, Slootmaker C, Kush J, Shwiff S, Teeter L, Armstrong J. 2021. Economic estimates of wild hog (Sus scrofa) damage and control among young forest plantations in Alabama [J]. Small-Scale Forestry, 20: 503-516. | |
| Gibb R, Browning E, Glover‐Kapfer P, Jones K E. 2019. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring [J]. Methods in Ecology and Evolution, 10 (2): 169-185. DOI: 10.1111/2041-210X.13101 . | |
| He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778. | |
| Hensel A L J, Dobney S L, Moran I G, Thomas I P, Burant J B, Woodworth B K, Doucet S M, Newman A E M, Norris D R, Williams H, Mennill D J. 2022. Passive acoustic monitoring provides predictable and reliable underestimates of population size and longevity in wild Savannah Sparrows [J]. Ornithological Applications, 124 (3): duac018. DOI: 10.1093/ornithapp/duac018 . | |
| Hopkins J M, Edwards W, Schwarzkopf L. 2022. Invading the soundscape: exploring the effects of invasive species’ calls on acoustic signals of native wildlife [J]. Biological Invasions, 24 (11): 3381-3393. | |
| Ismail Fawaz H, Lucas B, Forestier G, Pelletier C, Schmidt D F, Weber J, Webb G I, Idoumghar L, Muller P‑A, Petitjean F. 2020. Inceptiontime: finding alexnet for time series classification [J]. Data Mining and Knowledge Discovery, 34 (6): 1936-1962. | |
| Kahl S, Wood C M, Eibl M, Klinck H. 2021. BirdNET: A deep learning solution for avian diversity monitoring [J]. Ecological Informatics, 61: 101236. DOI: 10.1016/j.ecoinf.2021.101236 . | |
| Kim C‑I, Cho Y, Jung S, Rew J, Hwang E. 2020. Animal sounds classification scheme based on multi‑feature network with mixed datasets [J]. KSII Transactions on Internet and Information Systems (TIIS), 14 (8): 3384-3398. | |
| Laiolo P. 2010. The emerging significance of bioacoustics in animal species conservation [J]. Biological Conservation, 143 (7): 1635-1645. | |
| Lausen C L, Falxa G A, Solick D I, McEwan A L, Baker M D, de Freitas E, Sarell M. 2023. Singing silver‑haired bats (Lasionycteris noctivagans) [J]. Wildlife Society Bulletin, 47 (4): e1500. DOI: 10.1002/wsb.1500 . | |
| Layng A M, Adams A M, Goertz D E, Morrison K W, Pond B A, Phoenix R D. 2019. Bat species distribution and habitat associations in northern Ontario, Canada [J]. Journal of Mammalogy, 100 (1): 249-260. | |
| Lostanlen V, Salamon J, Farnsworth A, Kelling S, Bello J P. 2019. Robust sound event detection in bioacoustic sensor networks [J]. PLoS ONE, 14 (10): e0214168. DOI: 10.1371/journal.pone.0214168 . | |
| Mammides C, Goodale E, Dayananda S K, Kang L, Chen J. 2017. Do acoustic indices correlate with bird diversity? Insights from two biodiverse regions in Yunnan Province, south China [J]. Ecological Indicators, 82: 470-477. | |
| McGinn K, Kahl S, Peery M Z, Klinck H, Wood C M. 2023. Feature embeddings from the BirdNET algorithm provide insights into avian ecology [J]. Ecological Informatics, 74: 101995. DOI: 10.1016/j.ecoinf.2023.101995 . | |
| Mena J L, Rivero J, Bonifaz E, Pastor P, Pacheco J, Aide T M. 2022. The effect of artificial light on bat richness and nocturnal soundscapes along an urbanization gradient in an arid landscape of central Peru [J]. Urban Ecosystems, 25 (2): 563-574. | |
| Metcalf O, Abrahams C, Ashington B, Baker E, Bradfer‑Lawrence T, Browning E, Carruthers‑Jones J, Darby J, Dick J, Eldridge A. 2023. Good practice guidelines for long‑term ecoacoustic monitoring in the UK [R]. UK Acoustics Network. https://e‑space.mmu.ac.uk/id/eprint/631466. | |
| Metcalf O C, Barlow J, Devenish C, Marsden S, Berenguer E, Lees A C. 2021. Acoustic indices perform better when applied at ecologically meaningful time and frequency scales [J]. Methods in Ecology and Evolution, 12 (3): 421-431. | |
| Morgan M M, Braasch J. 2022. Open set classification strategies for long‑term environmental field recordings for bird species recognition [J]. The Journal of the Acoustical Society of America, 151 (6): 4028-4038. | |
| Morrison C A, Auniņš A, Benkő Z, Brotons L, Chodkiewicz T, Chylarecki P, Escandell V, Eskildsen D, Gamero A, Herrando S. 2021. Bird population declines and species turnover are changing the acoustic properties of spring soundscapes [J]. Nature Communications, 12 (1): 6217. DOI: 0.1038/s41467-021-26488-1 . | |
| Müller J, Mitesser O, Schaefer H M, Seibold S, Busse A, Kriegel P, Rabl D, Gelis R, Arteaga A, Freile J. 2023. Soundscapes and deep learning enable tracking biodiversity recovery in tropical forests [J]. Nature Communications, 14 (1): 6191.DOI: 10.1038/s41467-021-26488-1 . | |
| Nanni L, Maguolo G, Paci M. 2020. Data augmentation approaches for improving animal audio classification [J]. Ecological Informatics, 57: 101084. DOI: 10.1016/j.ecoinf.2020.101084 . | |
| Nolasco I, Singh S, Morfi V, Lostanlen V, Strandburg‑Peshkin A, Vidaña‑Vila E, Gill L, Pamuła H, Whitehead H, Kiskin I. 2023. Learning to detect an animal sound from five examples [J]. Ecological Informatics, 77: 102258. DOI: 10.1016/j.ecoinf.2023.102258 . | |
| Ntalampiras S. 2018. Bird species identification via transfer learning from music genres [J]. Ecological Informatics, 44: 76-81. | |
| Parcollet T, Morchid M, Linares G. 2020. E2E‑SINCNET: Toward fully end‑to‑end speech recognition [C]. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 7714-7718. | |
| Penar W, Magiera A, Klocek C. 2020. Applications of bioacoustics in animal ecology [J]. Ecological Complexity, 43: 100847. DOI: 10.1016/j.ecocom.2020.100847 . | |
| Pérez‑Granados C, Schuchmann K‑L. 2023. The sound of the illegal: Applying bioacoustics for long‑term monitoring of illegal cattle in protected areas [J]. Ecological Informatics, 74: 101981. DOI: 10.1016/j.ecoinf.2023.101981 . | |
| Pérez‐Granados C. 2023. BirdNET: applications, performance, pitfalls and future opportunities [J]. Ibis, 165 (3): 1068-1075. | |
| Pieretti N, Farina A, Morri D. 2011. A new methodology to infer the singing activity of an avian community: the acoustic complexity index (ACI) [J]. Ecological Indicators, 11 (3): 868-873. | |
| Pijanowski B C, Villanueva‑Rivera L J, Dumyahn S L, Farina A, Krause B L, Napoletano B M, Gage S H, Pieretti N. 2011. Soundscape ecology: the science of sound in the landscape [J]. BioScience, 61 (3): 203-216. | |
| Priyadarshani N, Marsland S, Castro I. 2018. Automated birdsong recognition in complex acoustic environments: a review [J]. Journal of Avian Biology, 49 (5): jav‑01447. DOI: 10.1111/jav.01447 . | |
| Priyadarshani N, Marsland S, Juodakis J, Castro I, Listanti V. 2020. Wavelet filters for automated recognition of birdsong in long‐time field recordings [J]. Methods in Ecology and Evolution, 11 (3): 403-417. | |
| Ribeiro J, José W, Harmon K, Leite G A, de Melo T N, LeBien J, Campos‑Cerqueira M. 2022. Passive acoustic monitoring as a tool to investigate the spatial distribution of invasive alien species [J]. Remote Sensing, 14 (18): 4565.DOI: 10.3390/rs14184565 . | |
| Roch M A. 2021. How machine learning contributes to solve acoustical problems [J]. Acoustics Today, 17 (4): 48. DOI: 10.1121/at.2021.17.4.48 . | |
| Rocha L H, Ferreira L S, Paula B C, Rodrigues F H, Sousa‑Lima R S. 2015. An evaluation of manual and automated methods for detecting sounds of maned wolves (Chrysocyon brachyurus Illiger 1815) [J]. Bioacoustics, 24 (2): 185-198. | |
| Scarpelli M D, Liquet B, Tucker D, Fuller S, Roe P. 2021. Multi‑index ecoacoustics analysis for terrestrial soundscapes: a new semi‑automated approach using time‑series motif discovery and random forest classification [J]. Frontiers in Ecology and Evolution, 9: 738537. DOI: 10.3389/fevo.2021.738537 . | |
| Sethi S S, Jones N S, Fulcher B D, Picinali L, Clink D J, Klinck H, Orme C D L, Wrege P H, Ewers R M. 2020. Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set [J]. Proceedings of the National Academy of Sciences, 117 (29): 17049-17055. | |
| Shamon H, Paraskevopoulou Z, Kitzes J, Card E, Deichmann J L, Boyce A J, McShea W J. 2021. Using ecoacoustics metrices to track grassland bird richness across landscape gradients [J]. Ecological Indicators, 120: 106928. DOI: 10.1016/j.ecolind.2020.106928 . | |
| Sharma G, Umapathy K, Krishnan S. 2020. Trends in audio signal feature extraction methods [J]. Applied Acoustics, 158: 107020. DOI: 10.1111/2041-210X.13521 . | |
| Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large‑scale image recognition [Z]. arXiv, arXiv:1409.1556. DOI: 10.48550/arXiv.1409.1556 . | |
| Steinfath E, Palacios‑Muñoz A, Rottschäfer J R, Yuezak D, Clemens J. 2021. Fast and accurate annotation of acoustic signals with deep neural networks [J]. Elife, 10: e68837. DOI: 10.7554/eLife.68837 . | |
| Stowell D. 2022. Computational bioacoustics with deep learning: a review and roadmap [J]. PeerJ, 10: e13152. DOI: 10.7717/peerj.13152 . | |
| Stowell D, Plumbley M D. 2014. Automatic large‑scale classification of bird sounds is strongly improved by unsupervised feature learning [J]. PeerJ, 2: e488. DOI: 10.7717/peerj.488 . | |
| Stowell D, Wood M D, Pamuła H, Stylianou Y, Glotin H. 2019. Automatic acoustic detection of birds through deep learning: The first bird audio detection challenge [J]. Methods in Ecology and Evolution, 10 (3): 368-380. | |
| Sugai L S M, Silva T S F, Ribeiro J W, Llusia D. 2019. Terrestrial passive acoustic monitoring: review and perspectives [J]. BioScience, 69 (1): 15-25. | |
| Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. 2015. Going deeper with convolutions [C]. Proceedings of the IEEE conference on computer vision and pattern recognition.DOI: 10.1109/CVPR.2015.7298594 . | |
| Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. 2016. Rethinking the inception architecture for computer vision [C]. Proceedings of the IEEE conference on computer vision and pattern recognition. DOI: 10.1109/CVPR.2016.308 . | |
| Tan M, Le Q. 2019. Efficientnet: Rethinking model scaling for convolutional neural networks [C]. International conference on machine learning. PMLR, 6105-6114. DOI: 10.48550/arXiv.1905.11946 . | |
| Villanueva‑Rivera L J, Pijanowski B C, Doucette J, Pekin B. 2011. A primer of acoustic analysis for landscape ecologists [J]. Landscape Ecology, 26: 1233-1246. | |
| Wang Z D, Ma H G, Zhong X K, Zhu C Y, Wang Y X Wang J C, Fan P F. 2024. In the songs of Hainan gibbons: automated individual dynamic monitoring from acoustic recordings [J]. Biological Conservation, 294: 110634. DOI: 10.1016/j.biocon.2024.110634 . | |
| Wolfenden A D, Slabbekoorn H, Kluk K, de Kort S R. 2019. Aircraft sound exposure leads to song frequency decline and elevated aggression in wild chiffchaffs [J]. Journal of Animal Ecology, 88 (11): 1720-1731. | |
| Xie J, Colonna J G, Zhang J. 2021. Bioacoustic signal denoising: a review [J]. Artificial Intelligence Review, 54 (5): 3575-3597. | |
| Xie J, Hu K, Zhu M, Guo Y. 2020. Bioacoustic signal classification in continuous recordings: syllable‑segmentation vs sliding‑window [J]. Expert Systems with Applications, 152: 113390. DOI: 10.1016/j.eswa.2020.113390 . | |
| Xie J, Zhong Y, Zhang J, Liu S, Ding C, Triantafyllopoulos A. 2023. A review of automatic recognition technology for bird vocalizations in the deep learning era [J]. Ecological Informatics, 73:101927.DOI: 10.1016/j.ecoinf.2022.101927 . | |
| Zambolli A H, Manzano M C R, Honda L K, Rezende G C, Culot L. 2023. Performance of autonomous recorders to detect a cryptic and endangered primate species, the black lion‑tamarin (Leontopithecus chrysopygus) [J]. American Journal of Primatology, 85 (1): e23454. DOI: 10.1002/ajp.23454 . | |
| Zhang C, He K, Gao X, Guo Y. 2024a. Automatic bioacoustics noise reduction method based on a deep feature loss network [J]. Ecological Informatics, 80: 102517. DOI: 10.1016/j.ecoinf.2024.102517 . | |
| Zhang C, Jin N, Xie J, Hao Z. 2024b. CicadaNet: Deep learning based automatic cicada chorus filtering for improved long‑term bird monitoring [J]. Ecological Indicators, 158: 111423. DOI: 10.1016/j.ecolind.2023.111423 . | |
| Zhang C, Zhang Y, Zheng X, Gao X, Hao Z. 2024c. Influence of recording devices and environmental noise on acoustic index scores: Implications for bird sound‑based assessments [J]. Ecological Indicators, 159: 111759. DOI: 10.1016/j.ecolind.2024.111759 . | |
| Znidersic E, Towsey M, Roy W K, Darling S E, Truskinger A, Roe P, Watson D M. 2020. Using visualization and machine learning methods to monitor low detectability species: The least bittern as a case study [J]. Ecological Informatics, 55: 101014. DOI: 10.1016/j.ecoinf.2019.101014 . | |
| 杜元宝, 涂炜山, 杨乐, 顾党恩, 郭宝成, 刘宣. 2023. 外来入侵脊椎动物对生物多样性危害的研究进展 [J]. 中国科学: 生命科学, 53 (7): 1035-1054. | |
| 张同作, 江峰, 张婧捷, 蔡振媛, 高红梅, 顾海峰, 宋鹏飞. 2023. 三江源国家公园野生动物保护与管理对策 [J]. 兽类学报, 43 (2): 193-205. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
青公网安备 63010402000199号
青ICP备05000010号-2