兽类学报 ›› 2022, Vol. 42 ›› Issue (1): 58-68.DOI: 10.16829/j.slxb.150584
收稿日期:
2021-07-07
接受日期:
2021-09-21
出版日期:
2022-01-30
发布日期:
2022-01-13
通讯作者:
赵志军
作者简介:
霍达亮 (1995- ),男,硕士研究生,主要从事动物生理生态学研究.
基金资助:
Daliang HUO, Shasha LIAO, Jing CAO, Zhijun ZHAO()
Received:
2021-07-07
Accepted:
2021-09-21
Online:
2022-01-30
Published:
2022-01-13
Contact:
Zhijun ZHAO
摘要:
食物资源的不确定性是动物在自然环境中面临的重要挑战之一。“代谢率转换”假说认为,动物应对食物短缺的能量学策略在于降低代谢率以减少能量支出。然而在不同环境温度下非冬眠小型哺乳动物应对食物短缺的“代谢率转换”策略,尚不明确。为探究这一问题,将成年雄性黑线仓鼠在低温 (5.0℃)、室温 (21.0℃) 和高温 (32.5℃) 下断食处理24 h、36 h和48 h,再恢复自由取食 (重喂食) 5周。以植入式i-button测定腹腔体温,以开放式氧气分析系统测定代谢率、静息代谢率 (RMR) 和非颤抖性产热 (NST),以放射性免疫技术测定血清三碘甲腺原氨酸 (T3) 和四碘甲状腺原氨酸 (T4) 浓度。结果发现,与32.5℃组相比,5.0℃和21.0℃组断食后体温显著降低。断食组和重喂食组昼间和夜间代谢率、RMR和NST在低温下显著增加,高温下显著降低,然而断食组与重喂食组之间无显著差异。断食组黑线仓鼠脂肪贮存显著减少,环境温度越低脂肪动员越迅速。重喂食后脂肪贮存显著增加,但低温抑制脂肪贮存。断食组和重喂食组血清T3和T4水平无显著差异,但受环境温度的影响,低温下显著增加,与代谢产热的变化相一致。结果表明,不同温度下经历食物短缺的黑线仓鼠维持较高代谢率,不符合“代谢率转换”假说;低温下较高的代谢率主要用于满足体温调节的能量需求,甲状腺激素对代谢产热的促进作用是其内在机制之一。
中图分类号:
霍达亮, 廖莎莎, 曹静, 赵志军. 不同温度下黑线仓鼠应对食物短缺的能量学对策[J]. 兽类学报, 2022, 42(1): 58-68.
Daliang HUO, Shasha LIAO, Jing CAO, Zhijun ZHAO. The energy budget of striped hamsters in response to food shortage at different temperatures[J]. ACTA THERIOLOGICA SINICA, 2022, 42(1): 58-68.
图1 不同温度下断食和重喂食黑线仓鼠的时间轴. RMR:静息代谢率;NST:非颤抖性产热. 断食前和重喂食期间测定体重和摄食量
Fig. 1 The timeline of striped hamsters subjected to food deprivation and refeeding at 5.0℃, 21.0℃ and 32.5℃. DMR: Daily metabolic rate; Tb: Body temperature; RMR: Resting metabolic rate; NST: Nonshivering thermogenesis; TH: Thyroid hormones; DEI: Digestible energy intake. Body mass and food intake were measured before food deprivation and ad libitum refeeding
图2 不同温度下断食期间的黑线仓鼠体温变化 (A)、昼间和夜间平均体温 (B、C,数据为平均值 ± 标准误). day 0,断食前;FD: day 1、FD:day 2,断食后第1、2天. * 温度对体温的影响显著 (P < 0.05)
Fig. 2 Body temperature (Tb) (A), and average Tb during light and dark phases (B and C, mean ± SE) of striped hamsters subjected to food deprivation at 5.0℃, 21.0℃ and 32.5℃. day 0, before food deprivation; FD: day 1, day 2, the first and second day of food deprivation. * significant effect of temperature on Tb (P < 0.05)
图3 不同温度下断食和重喂食期间黑线仓鼠体重 (A) 和日摄食量 (B) 的变化 (平均值 ± 标准误). FD:断食;Re:重喂食;** 温度对日摄食量的影响显著 (P < 0.01)
Fig. 3 Body mass (A), and daily food intake (B) of striped hamsters subjected to food deprivation and refeeding at 5.0℃, 21.0℃ and 32.5℃ (mean ± SE). FD: food deprivation; Re: refeeding. ** significant effect of temperature on daily food intake (P < 0.01)
图4 不同温度下重喂食黑线仓鼠摄入能 (GEI, A)、消化能 (DEI, B)、粪能 (GEF, C) 和消化率 (D) (平均值 ± 标准误). 柱上不同字母表示组间差异显著 (P < 0.05)
Fig. 4 Gross energy intake (GEI, A), digestive energy intake (DEI, B), gross energy of feces (GEF, C) and digestibility (D) of striped hamsters subjected to food deprivation and refeeding at 5.0℃, 21.0℃and 32.5℃ (means ± SE). Different letters above the columns indicate significant difference between groups (P < 0.05)
图5 不同温度下断食 (A) 与重喂食 (B) 的黑线仓鼠代谢率. 数据为平均值 (A、B) 或者平均值 ± 标准误 (C、D). FD: day 1、FD:day 2,断食后第1、2天. Ptem**,温度的影响显著 (P < 0.01)
Fig. 5 The metabolic rate (MR) during food deprivation (A) and refeeding (B) of striped hamsters at 5.0℃, 21.0℃ and 32.5℃. Data are means (A, B) or mean ± SE (C, D). FD: day 1, day 2, the first and second day of food deprivation. Ptem**, significant effect of temperature (P < 0.01)
图6 重喂食后不同温度下黑线仓鼠静息代谢率 (A) 和非颤抖性产热 (B) (平均值 ± 标准误). 不同字母表示组间差异显著 (P < 0.05)
Fig. 6 Resting metabolic rate (RMR) (A) and nonshivering thermogenesis (NST) (B) during refeeding of striped hamsters at 5.0℃, 21.0℃ and 32.5℃ (mean ± SE). Different letters above the columns indicate significant difference between groups (P < 0.05)
图7 不同温度下断食与重喂食黑线仓鼠的脂肪重量 (平均值 ± 标准误). PFD为断食的影响;Ptem为温度的影响;**,P < 0.01
Fig. 7 The mass of fat deposit of striped hamsters subjected to food deprivation and refeeding at 5.0℃, 21.0℃ and 32.5℃ (mean ± SE). BAT: Brown adipose tissue. PFD means significant effect of food deprivation; Ptem means significant effect of temperature. **, P < 0.01
图8 不同温度下断食与重喂食黑线仓鼠的血清T3浓度 (A)、T4浓度 (B) 和T3/T4 (C) (平均值 ± 标准误). PFD为断食的影响;Ptem为温度的影响;* P < 0.05;** P < 0.01
Fig. 8 Serum T3 (A), T4 (B) and T3/T4 (C) of striped hamsters subjected to food deprivation and refeeding at 5.0℃, 21.0℃ and 32.5℃(mean ± SE). PFD means significant effect of food deprivation; Ptem means significant effect of temperature. * P < 0.05; ** P < 0.01
Cui Z Q, Liu X Y, Song S Y, Yang M. 2019. The characteristics of metabolism and thermoregulation of Microtus gregalis. Acta Theriologica Sinica, 39: 295-301. (in Chinese) | |
Freake H C, Oppenheimer J H. 1995. Thermogenesis and thyroid function. Annual Review of Nutrition, 15: 263-291. | |
Gutman R, Choshniak I, Kronfeld-Schor N. 2006. Defending body mass during food restriction in Acomysru ssatus: a desert rodent that does not store food. American Journal of Physiology, 290: R881-891. | |
Gutman R, Yosha D, Choshniak I, Kronfeld-Schor N. 2007. Two strategies for coping with food shortage in desert golden spiny mice. Physiology & Behavior, 90: 95-102. | |
Hambly C, Speakman J R. 2005. Contribution of different mechanisms to compensation for energy restriction in the mouse. Obesity Research, 13: 1548-1557. | |
Heldmaier G. 1971. Nonshivering thermogenesis and body size in mammals. Journal of Comparative Physiology, 73: 222-248. | |
Jefimow M, Wojciechowski M, Tegowska E. 2004. Seasonal and daily changes in the capacity for nonshivering thermogenesis in the golden hamsters housed under semi-natural conditions. Comparative Biochemistry and Physiology A, 137: 297-309. | |
Khakisahneh S, Zhang X Y, Nouri Z, Hao S Y, Chi Q S, Wang D H. 2019. Thyroid hormones mediate metabolic rate and oxidative, anti-oxidative balance at different temperatures in Mongolian gerbils (Meriones unguiculatus). Comparative Biochemistry and Physiology Part C, 216: 101-109. | |
Lanni A, Moreno M, Lombardi A, Goglia F. 2003. Thyroid hormone and uncoupling proteins. FEBS Letters, 543 (1-3): 5-10. | |
Li X C, Gong X N, Zhang H, Zhu W L. 2020. Effects of food restriction on energy metabolism in male Apodemus chevrieri from Hengduan Mountain region of China. Indian Journal of Animal Research, 54: 419-423 | |
Liu Q S, Wang D H. 2007. Effects of diet quality on phenotypic flexibility of organ size and digestive function in Mongolian gerbils (Meriones unguiculatus). Comparative Biochemistry and Physiology Part B, 177: 509-518. | |
Martínez-Sánchez N, Moreno-Navarrete J M, Contreras C, Rial-Pensado E, Fernø J, Nogueiras R, Diéguez C, Fernández J, López M. 2017. Thyroid hormones induce browning of white fat. Journal of Endocrinology, 232 (2): 351-362. | |
Merkt J, Taylor C R. 1994. A metabolic switch for desert survival. Proceedings of the National Academy of Sciences of the United States of America, 91: 12313-12316. | |
Naya D E, Eloso C, Sabat P, Bozinovic F. 2011. Physiological flexibility and climate change: The case of digestive function regulation in lizards. Comparative Biochemistry and Physiology Part A, 159 (1): 100-104. | |
Nespolo R F, Bacigalupe L D, Rezende E L, Bozinovic F. 2001. When nonshivering thermogenesis equals maximum metabolic rate: thermal acclimation and phenotypic plasticity of fossorial Spalacopus cyanus (Rodentia). Physiological and Biochemical Zoology, 74 (3): 325-332. | |
Nespolo R F, Franco M. 2007. Whole-animal metabolic rate is a repeatable trait: a meta-analysis. The Journal of Experimental Biology, 210: 2000-2005. | |
Park I R, Mount D B, Himms-Hagen J. 1989. Role of T3 in thermogenic and trophic responses of brown adipose tissue to cold. American Journal of Physiology,257(Pt1): E81-87. | |
Silva J E. 2006. Thermogenic mechanisms and their hormonal regulation. Physiological Reviews, 86: 435-464. | |
Song Z G, Wang D H. 2003. Metabolism and thermoregulation in the striped hamster Cricetulus barabensis. Journal of Thermal Biology, 28: 509-514. | |
Speakman J R, Hambly C. 2007. Starving for Life: What animal studies can and cannot tell us about the use of caloric restriction to prolong human lifespan. The Journal of Nutrition, 137: 1078-1086. | |
Speakman J R, Mitchell S E. 2011. Caloric restriction. Molecular Aspects of Medicine, 32: 159-221. | |
Wallace M E. 1976. Effects of stress due to deprivation and transport in different genotypes of house mouse. Laboratory Animals, 10: 335-347. | |
Wang D H. 2011. Some progress in mammalian physiological ecology in China. Acta Theriologica Sinica, 31 (1): 15-19. (in Chinese) | |
Wang D H, Wang Z W. 1996. Seasonal variations on thermogenesis and energy requirements of plateau pikas Ochotona curzoniae and root voles Microtus oeconomus. Acta Theriologica, 41: 225-236. | |
Wen J, Tan S, Wang D H, Zhao Z J. 2018a. Variation of food availability affects male striped hamsters (Cricetulus barabensis) with different levels of metabolic rate. Integrative Zoology, 13: 769-782. | |
Wen J, Tan S, Qiao Q, Shi L, Huang Y, Zhao Z. 2018b. The strategies of behavior, energetic and thermogenesis of striped hamsters in response to food deprivation. Integrative Zoology, 13: 70-83. | |
Williams T D, Chambers J B, Henderson R P. 2002. Cardiovascular responses to caloric restriction and thermoneutrality in C57BL/6J mice. American Journal of Physiology, 282: R1459-1467. | |
Yu J X, Deng G M, Bao Y F, Zhao Z J. 2020. The adaptive regulations of energy metabolism and fat accumulation during post lactation in striped hamster. Acta Theriologica Sinica, 40 (6): 595-605. (in Chinese) | |
Zhang J Y, Zhao X Y, Wen J, Tan S, Zhao Z J. 2016. Plasticity in gastrointestinal morphology and enzyme activity in lactating striped hamsters (Cricetulus barabensis). Journal of Experimental Biology,219(Pt9): 1327-1336. | |
Zhang L, Liu P F, Zhu W L, Cai J H, Wang Z K. 2012. Variations in thermal physiology and energetics of the tree shrew (Tupaia belangeri) in response to cold acclimation. Journal of Comparative Physiology B, 182 (1): 167-176. | |
Zhang Z B, Wang Z W. 1998. Ecology and Management of Rodent Pests in Agriculture. Beijing: Ocean Press. (in Chinese) | |
Zhao Z J, Cao J, Liu Z C, Wang G Y, Li L S. 2010. Seasonal regulations of resting metabolic rate and thermogenesis in striped hamster (Cricetulus barabensis). Journal of Thermal Biology, 35: 401-405. | |
Zhao Z J, Cao J, Wang G Y, Ma F, Meng X L. 2009a. Effect of random food deprivation and re-feeding on energy metabolism and behavior in mice. Acta Theriologica Sinica, 29 (3): 277-285. (in Chinese) | |
Zhao Z J, Cao J, Chen K X. 2014. Seasonal changes in body mass and energy budget in striped hamsters. Acta Theriologica Sinica, 34 (2): 149-157. (in Chinese) | |
Zhao Z J, Wang R R, Cao J, Pei L Y. 2009b. Effect of random food deprivation and refeeding on energy budget and development in mice. Zoological Research, 30 (5): 534-538. (in Chinese) | |
Zhao Z J. 2012. Effect of food restriction on energy metabolism and thermogenesis in striped hamster. Acta Theriologica Sinica, 32 (4): 297-305. (in Chinese) | |
王德华. 2011. 我国哺乳动物生理生态学的一些进展和未来发展的建议. 兽类学报, 31 (1): 15-19. | |
余静欣, 邓光敏, 鲍雨帆, 赵志军. 2020. 黑线仓鼠断乳后能量代谢和脂肪累积的适应性调节. 兽类学报, 40 (6): 595-605. | |
张知彬, 王祖望. 1998. 农业重要害鼠的生态学及控制对策. 北京: 海洋出版社. | |
赵志军, 曹静, 王桂英, 马飞, 孟喜龙. 2009a. 随机饥饿和重喂食对小鼠能量代谢和行为的影响. 兽类学报, 29 (3): 277-285. | |
赵志军, 王瑞瑞, 曹静, 裴兰英. 2009b. 随机限食和重喂食小鼠能量收支和生长发育的可塑性. 动物学研究, 30 (5): 534-538. | |
赵志军, 曹静, 陈可新. 2014. 黑线仓鼠体重和能量代谢的季节性变化. 兽类学报, 34 (2): 149-157. | |
赵志军. 2012. 食物限制对黑线仓鼠能量代谢和产热的影响.兽类学报, 32 (4): 297-305. | |
崔志强, 刘新宇, 宋士一, 杨明. 2019. 狭颅田鼠的代谢特征及体温调节. 兽类学报, 39 (3): 295-301. |
[1] | 赵真, 张开元, 杨瑞, 曹静, 赵志军. 高纤维食物对黑线仓鼠哺乳期能量收支的影响[J]. 兽类学报, 2024, 44(4): 436-448. |
[2] | 张锐涵, 罗丹, 罗欣欣, 胡陈晓, 林珑, 陈倩, 曹静, 赵志军. 高温暴露对黑线仓鼠能量代谢和组织氧化应激的影响[J]. 兽类学报, 2023, 43(6): 710-722. |
[3] | 李红娟, 王德华, 王振山, 张学英. 哺乳期高温经历导致布氏田鼠F1代的热中性区变窄[J]. 兽类学报, 2023, 43(4): 412-421. |
[4] | 李紫千, 朱永亮, 李林国, 李伟, 杨建光, 管振华, 蒋学龙. 一夫一妻西黑冠长臂猿的群体活动及其影响因素[J]. 兽类学报, 2023, 43(2): 141-148. |
[5] | 吕金珍, 唐丽秋, 张学英, 王德华. 温度驯化对布氏田鼠肝脏温敏瞬时受体电位通道蛋白表达的影响[J]. 兽类学报, 2023, 43(1): 1-10. |
[6] | 迟庆生, 罗惠宁, 姚小刚, 李光容, 杨昌乾, 张强, 刘雨杭, 刘全生. 高纤维食物对海南社鼠能量代谢的影响[J]. 兽类学报, 2023, 43(1): 11-20. |
[7] | 陈辉宝, 贾婷, 章迪, 张浩, 王政昆, 朱万龙. 外源瘦素注射对昆明和大理地区大绒鼠适应性产热的影响[J]. 兽类学报, 2023, 43(1): 21-32. |
[8] | 王德华, 王祖望. 青藏高原小型哺乳动物的生理生态学研究:从个体到生态系统[J]. 兽类学报, 2022, 42(5): 482-489. |
[9] | 于祎, 赵明星, 王玉辉, 张学英, 徐德立, 王德华. 花生对非繁殖期雌性黑线仓鼠细胞免疫和血液指标的影响[J]. 兽类学报, 2022, 42(3): 286-294. |
[10] | 满都呼, 袁帅, 杨素文, 纪羽, 朝克图, 伟军, 付和平, 武晓东. 东北鼢鼠活动强度及其与土壤温度和湿度的关系[J]. 兽类学报, 2021, 41(4): 441-450. |
[11] | 徐德立, 胡晓凯, 田玉芬, 王德华. 雌性黑线仓鼠免疫功能的季节变化[J]. 兽类学报, 2021, 41(2): 182-192. |
[12] | 余静欣 邓光敏 鲍雨帆 赵志军. 黑线仓鼠断乳后能量代谢和脂肪累积的适应性调节[J]. 兽类学报, 2020, 40(6): 595-605. |
[13] | 田双杰 张学英 刘伟 王德华. 长爪沙鼠的贮食行为与其个性和代谢水平之间的关系[J]. 兽类学报, 2020, 40(4): 307-316. |
[14] | 谭春桃 余义博 姜占萍 钟亮 张堰铭 曲家鹏. 不同海拔地区高原鼠兔探究性和静止代谢率的差异[J]. 兽类学报, 2020, 40(1): 27-36. |
[15] | 崔志强 刘新宇 宋士一 杨明. 狭颅田鼠的代谢特征及体温调节[J]. 兽类学报, 2019, 39(3): 295-301. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||