ACTA THERIOLOGICA SINICA ›› 2022, Vol. 42 ›› Issue (6): 705-715.DOI: 10.16829/j.slxb.150645
• ORIGINAL PAPERS • Previous Articles Next Articles
Qi ZHAO1, Qi ZHANG1, Haoling LI1, Yue LAN2, Xingan YAN3, Guijun ZHAO3(), Wenhua QI1()
Received:
2021-12-01
Accepted:
2022-07-05
Online:
2022-11-30
Published:
2022-12-02
Contact:
Guijun ZHAO,Wenhua QI
赵琪1, 张琪1, 李浩玲1, 兰月2, 鄢行安3, 赵贵军3(), 戚文华1()
通讯作者:
赵贵军,戚文华
作者简介:
赵琪 (1996- ),女,硕士研究生,主要从事动植物分子/遗传资源利用研究;基金资助:
CLC Number:
Qi ZHAO, Qi ZHANG, Haoling LI, Yue LAN, Xingan YAN, Guijun ZHAO, Wenhua QI. Distinct patterns of microsatellite and functional analysis of forest musk deer and its closely related species[J]. ACTA THERIOLOGICA SINICA, 2022, 42(6): 705-715.
赵琪, 张琪, 李浩玲, 兰月, 鄢行安, 赵贵军, 戚文华. 林麝及其近缘物种编码区微卫星分布规律及功能分析[J]. 兽类学报, 2022, 42(6): 705-715.
参数 Parameters | 林麝 Moschus berezovskii | 原麝 Moschus moschiferus | 小麂 Muntiacusreeves | 赤麂 Muntiacus vaginalis | 马鹿 Cervus elaphus |
---|---|---|---|---|---|
编码区基因数量 Total number of genes of CDS | 24 352 | 29 305 | 26 044 | 25 737 | 28 103 |
GC含量 GC content (%) | 53.79 | 53.37 | 53.34 | 53.41 | 53.60 |
SSR序列数量 Number of SSRs | 2 542 | 3 118 | 2 769 | 2 726 | 3 729 |
SSR序列长度 Total length of SSRs (bp) | 49 233 | 76 969 | 85 507 | 708 052 | 67 743 |
SSR序列占编码区序列的比例 CDS SSRs content (%) | 6.96 | 7.18 | 7.36 | 7.48 | 7.29 |
丰度 Relative abundance (No./Mb) | 75.28 | 64.63 | 65.18 | 60.86 | 52.64 |
密度 Relative density (bp/Mb) | 1 432.07 | 1 194.42 | 1 169.14 | 1 084.19 | 10 248.16 |
Table 1 Overview of the CDS of Moschus berezovskii and its closely related species
参数 Parameters | 林麝 Moschus berezovskii | 原麝 Moschus moschiferus | 小麂 Muntiacusreeves | 赤麂 Muntiacus vaginalis | 马鹿 Cervus elaphus |
---|---|---|---|---|---|
编码区基因数量 Total number of genes of CDS | 24 352 | 29 305 | 26 044 | 25 737 | 28 103 |
GC含量 GC content (%) | 53.79 | 53.37 | 53.34 | 53.41 | 53.60 |
SSR序列数量 Number of SSRs | 2 542 | 3 118 | 2 769 | 2 726 | 3 729 |
SSR序列长度 Total length of SSRs (bp) | 49 233 | 76 969 | 85 507 | 708 052 | 67 743 |
SSR序列占编码区序列的比例 CDS SSRs content (%) | 6.96 | 7.18 | 7.36 | 7.48 | 7.29 |
丰度 Relative abundance (No./Mb) | 75.28 | 64.63 | 65.18 | 60.86 | 52.64 |
密度 Relative density (bp/Mb) | 1 432.07 | 1 194.42 | 1 169.14 | 1 084.19 | 10 248.16 |
GO term | 林麝 Moschus berezovskii | 原麝 Moschus moschiferus | 小麂 Muntiacus reeves | 赤麂 Muntiacus vaginalis | 马鹿 Cervus elaphus |
---|---|---|---|---|---|
Positive regulation of nitrogen compound metabolic process | + | + | + | + | + |
Positive regulation of RNA biosynthetic process | + | + | + | + | + |
Negative regulation of RNA biosynthetic process | + | + | + | + | - |
Regulation of nucleobase-containing compound metabolic process | + | + | + | + | + |
Regulation of nucleic acid-templated transcription | + | + | + | + | + |
Transcription, DNA-templated | + | + | + | + | + |
Regulation of biosynthetic process | + | + | + | + | + |
Negative regulation of metabolic process | + | + | + | + | - |
Positive regulation of metabolic process | + | + | + | + | + |
Gene expression | + | + | + | + | + |
Regulation of macromolecule biosynthetic process | + | + | + | + | + |
Negative regulation of macromolecule biosynthetic process | + | + | + | + | - |
Positive regulation of macromolecule metabolic process | + | + | + | + | + |
Negative regulation of gene expression | + | + | - | + | - |
Positive regulation of transcription, DNA-templated | + | + | + | + | + |
Negative regulation of nucleobase-containing compound metabolic process | + | + | - | + | - |
Negative regulation of cellular metabolic process | + | + | - | + | - |
Negative regulation of cellular biosynthetic process | + | + | + | + | - |
Nucleic acid-templated transcription | + | + | - | + | + |
Negative regulation of biological process | + | + | + | + | - |
Stem cell differentiation | + | + | + | + | + |
RNA biosynthetic process | + | + | - | + | + |
Negative regulation of transcription by RNA polymerase Ⅱ | + | + | - | + | - |
Regulation of nitrogen compound metabolic process | + | + | - | + | + |
Regulation of RNA metabolic process | + | + | - | + | + |
Central nervous system neuron differentiation | + | + | + | + | + |
Negative regulation of RNA metabolic process | + | + | + | + | - |
Regulation of RNA biosynthetic process | + | + | - | + | + |
Negative regulation of transcription, DNA-templated | + | + | + | + | - |
Positive regulation of cellular metabolic process | + | + | + | + | + |
Table 2 The most significantly enriched biological process GO terms of coding SSRs of Moschus berezovskii and its closely related species (top 30)
GO term | 林麝 Moschus berezovskii | 原麝 Moschus moschiferus | 小麂 Muntiacus reeves | 赤麂 Muntiacus vaginalis | 马鹿 Cervus elaphus |
---|---|---|---|---|---|
Positive regulation of nitrogen compound metabolic process | + | + | + | + | + |
Positive regulation of RNA biosynthetic process | + | + | + | + | + |
Negative regulation of RNA biosynthetic process | + | + | + | + | - |
Regulation of nucleobase-containing compound metabolic process | + | + | + | + | + |
Regulation of nucleic acid-templated transcription | + | + | + | + | + |
Transcription, DNA-templated | + | + | + | + | + |
Regulation of biosynthetic process | + | + | + | + | + |
Negative regulation of metabolic process | + | + | + | + | - |
Positive regulation of metabolic process | + | + | + | + | + |
Gene expression | + | + | + | + | + |
Regulation of macromolecule biosynthetic process | + | + | + | + | + |
Negative regulation of macromolecule biosynthetic process | + | + | + | + | - |
Positive regulation of macromolecule metabolic process | + | + | + | + | + |
Negative regulation of gene expression | + | + | - | + | - |
Positive regulation of transcription, DNA-templated | + | + | + | + | + |
Negative regulation of nucleobase-containing compound metabolic process | + | + | - | + | - |
Negative regulation of cellular metabolic process | + | + | - | + | - |
Negative regulation of cellular biosynthetic process | + | + | + | + | - |
Nucleic acid-templated transcription | + | + | - | + | + |
Negative regulation of biological process | + | + | + | + | - |
Stem cell differentiation | + | + | + | + | + |
RNA biosynthetic process | + | + | - | + | + |
Negative regulation of transcription by RNA polymerase Ⅱ | + | + | - | + | - |
Regulation of nitrogen compound metabolic process | + | + | - | + | + |
Regulation of RNA metabolic process | + | + | - | + | + |
Central nervous system neuron differentiation | + | + | + | + | + |
Negative regulation of RNA metabolic process | + | + | + | + | - |
Regulation of RNA biosynthetic process | + | + | - | + | + |
Negative regulation of transcription, DNA-templated | + | + | + | + | - |
Positive regulation of cellular metabolic process | + | + | + | + | + |
Pathway Class | Pathway name | 林麝 Moschus berezovskii | 原麝 Moschus moschiferus | 小麂 Muntiacus reeves | 赤麂 Muntiacus muntjak | 马鹿 Cervus elaphus |
---|---|---|---|---|---|---|
遗传信息调控 Genetic information processing | Protein families: genetic information processing | 1.83E-08 | 8.79E-14 | 1.55E-13 | 0 | 0 |
Transcription factors | 9.35E-07 | 1.10E-13 | 1.33E-13 | 0 | 1.15E-11 | |
Chromosome and associated proteins | 1.24E-05 | 1.76E-13 | 9.18E-04 | 6.37E-05 | 5.97E-09 | |
Spliceosome | 4.03E-03 | 3.56E-06 | 1.15E-04 | 1.22E-05 | 1.26E-12 | |
Transcription machinery | 2.36E-02 | 9.71E-04 | 1.32E-2 | 5.29E-3 | 1.64E-07 | |
Ion channels | — | 5.50E-3 | 4.93E-3 | 5.93E-3 | 8.34E-07 | |
Transcription | — | 1.82E-2 | 4.68E-2 | 4.46E-2 | 6.83E-3 | |
Ribosome biogenesis | — | — | 4.10E-3 | 4.55E-3 | 3.73E-2 | |
新陈代谢 Metabolism | GnRH secretion | 3.78E-03 | 1.09E-05 | 1.80E-2 | — | 9.93E-3 |
Lysine degradation | 8.37E-03 | 2.12E-07 | — | 4.53E-2 | 1.99E-3 | |
Parathyroid hormone synthesis, secretion and action | — | 2.00E-2 | 3.08E-2 | — | — | |
Renin secretion | — | 2.98E-2 | — | — | — | |
Cortisol synthesis and secretion | — | — | 3.52E-2 | — | 3.59E-2 | |
Insulin secretion | — | — | 3.83E-2 | — | 2.27E-2 | |
机体系统 Organismal systems | Dorso-ventral axis formation | — | 1.70E-03 | — | — | — |
Endocrine system | — | 5.84E-3 | — | — | — | |
Vascular smooth muscle contraction | — | 2.27E-2 | — | — | — | |
Cell adherens junction | — | 2.19E-2 | — | — | 1.24E-2 | |
环境信息调控 Environmental information processing | Notch signaling pathway | 6.88E-03 | 9.53E-04 | 4.33E-3 | 6.37E-3 | 7.64E-05 |
Signal transduction | 2.18E-02 | 1.25E-03 | — | — | 7.89E-3 | |
cAMP signaling pathway | 4.33E-02 | — | — | — | — | |
MAPK signaling pathway | — | 4.32E-03 | — | — | 2.08E-2 | |
cGMP-PKG signaling pathway | — | 2.91E-2 | 4.01E-2 | — | 5.93E-3 | |
Wnt signaling pathway | — | — | 2.85E-2 | — | — | |
疾病 Diseases | Maturity onset diabetes of the young | 1.63E-02 | 5.50E-03 | 3.63E-2 | 1.07E-2 | 2.21E-2 |
Type Ⅱ diabetes mellitus | — | 1.78E-3 | — | 1.03E-2 | 1.02E-04 | |
Bladder cancer | — | 2.04E-2 | — | — | 4.37E-2 | |
Spinocerebellar ataxia | — | 2.05E-2 | — | — | — | |
Breast cancer | — | 4.98E-2 | 2.28E-2 | — | — | |
Cushing syndrome | — | — | 3.60E-3 | 5.97E-3 | 4.72E-2 |
Table 3 The most significantly enriched KEGG pathway of coding SSRsof Moschus berezovskii and its closely related species (top 30)
Pathway Class | Pathway name | 林麝 Moschus berezovskii | 原麝 Moschus moschiferus | 小麂 Muntiacus reeves | 赤麂 Muntiacus muntjak | 马鹿 Cervus elaphus |
---|---|---|---|---|---|---|
遗传信息调控 Genetic information processing | Protein families: genetic information processing | 1.83E-08 | 8.79E-14 | 1.55E-13 | 0 | 0 |
Transcription factors | 9.35E-07 | 1.10E-13 | 1.33E-13 | 0 | 1.15E-11 | |
Chromosome and associated proteins | 1.24E-05 | 1.76E-13 | 9.18E-04 | 6.37E-05 | 5.97E-09 | |
Spliceosome | 4.03E-03 | 3.56E-06 | 1.15E-04 | 1.22E-05 | 1.26E-12 | |
Transcription machinery | 2.36E-02 | 9.71E-04 | 1.32E-2 | 5.29E-3 | 1.64E-07 | |
Ion channels | — | 5.50E-3 | 4.93E-3 | 5.93E-3 | 8.34E-07 | |
Transcription | — | 1.82E-2 | 4.68E-2 | 4.46E-2 | 6.83E-3 | |
Ribosome biogenesis | — | — | 4.10E-3 | 4.55E-3 | 3.73E-2 | |
新陈代谢 Metabolism | GnRH secretion | 3.78E-03 | 1.09E-05 | 1.80E-2 | — | 9.93E-3 |
Lysine degradation | 8.37E-03 | 2.12E-07 | — | 4.53E-2 | 1.99E-3 | |
Parathyroid hormone synthesis, secretion and action | — | 2.00E-2 | 3.08E-2 | — | — | |
Renin secretion | — | 2.98E-2 | — | — | — | |
Cortisol synthesis and secretion | — | — | 3.52E-2 | — | 3.59E-2 | |
Insulin secretion | — | — | 3.83E-2 | — | 2.27E-2 | |
机体系统 Organismal systems | Dorso-ventral axis formation | — | 1.70E-03 | — | — | — |
Endocrine system | — | 5.84E-3 | — | — | — | |
Vascular smooth muscle contraction | — | 2.27E-2 | — | — | — | |
Cell adherens junction | — | 2.19E-2 | — | — | 1.24E-2 | |
环境信息调控 Environmental information processing | Notch signaling pathway | 6.88E-03 | 9.53E-04 | 4.33E-3 | 6.37E-3 | 7.64E-05 |
Signal transduction | 2.18E-02 | 1.25E-03 | — | — | 7.89E-3 | |
cAMP signaling pathway | 4.33E-02 | — | — | — | — | |
MAPK signaling pathway | — | 4.32E-03 | — | — | 2.08E-2 | |
cGMP-PKG signaling pathway | — | 2.91E-2 | 4.01E-2 | — | 5.93E-3 | |
Wnt signaling pathway | — | — | 2.85E-2 | — | — | |
疾病 Diseases | Maturity onset diabetes of the young | 1.63E-02 | 5.50E-03 | 3.63E-2 | 1.07E-2 | 2.21E-2 |
Type Ⅱ diabetes mellitus | — | 1.78E-3 | — | 1.03E-2 | 1.02E-04 | |
Bladder cancer | — | 2.04E-2 | — | — | 4.37E-2 | |
Spinocerebellar ataxia | — | 2.05E-2 | — | — | — | |
Breast cancer | — | 4.98E-2 | 2.28E-2 | — | — | |
Cushing syndrome | — | — | 3.60E-3 | 5.97E-3 | 4.72E-2 |
基因名称 | 微卫星类型 | Map ID | KEGG pathway |
---|---|---|---|
CEBPB | (GCC)5 (GCC)8 | Map04657 Map05152 Map05202 | IL-17 signaling pathway Tuberculosis Transcriptional misregulation in cancer |
ZEB1 | (GAG)5 | Map05206 Map05202 Map05215 | MicroRNAs in cancer Transcriptional misregulation in cancer Prostate cancer |
THY1 | (GCT)6 | Map04670 | Leukocyte transendothelial migration |
Bcl2 | (CCG)6 | Map05200 Map05206 Map05022 Map05202 Map04115 Map05210 Map05212 Map05220 Map05222 Map05215 Map05226 Map04932 Map05012 Map05221 Map05225 | Pathways in cancer MicroRNAs in cancer Pathways of neurodegeneration-multiple diseases Transcriptional misregulation in cancer p53 signaling pathway Colorectal cancer Pancreatic cancer Chronic myeloid leukemia Small cell lung cancer Prostate cancer Gastric cancer Non-alcoholic fatty liver disease Parkinson disease Acute myeloid leukemia Hepatocellular carcinoma |
PDCD1 | (CTG)6 | Map04660 Map05235 | T cell receptor signaling pathway PD-L1 expression and PD-1 checkpoint pathway in cancer |
WAS | (ATG)6 | Map04933 Map04936 Map05231 | AGE-RAGE signaling pathway in diabetic complications Alcoholic liver disease Choline metabolism in cancer |
HDAC5 | (AGC)5 (GAC)5 (GGA)5 | Map05203 Map05206 | Viral carcinogenesis MicroRNAs in cancer |
MYH9 | (GGA)5 | Map05130 | Pathogenic Escherichia coli infection |
JAG2 | (GCT)5 | Map05200 Map05224 | Pathways in cancer Breast cancer |
NOTCH4 | (GCT)5 | Map05206 Map05224 Map05200 | MicroRNAs in cancer Breast cancer Pathways in cancer |
Table 4 SSR types of key immune genes in Moschus berezovskii and their KEGG pathways
基因名称 | 微卫星类型 | Map ID | KEGG pathway |
---|---|---|---|
CEBPB | (GCC)5 (GCC)8 | Map04657 Map05152 Map05202 | IL-17 signaling pathway Tuberculosis Transcriptional misregulation in cancer |
ZEB1 | (GAG)5 | Map05206 Map05202 Map05215 | MicroRNAs in cancer Transcriptional misregulation in cancer Prostate cancer |
THY1 | (GCT)6 | Map04670 | Leukocyte transendothelial migration |
Bcl2 | (CCG)6 | Map05200 Map05206 Map05022 Map05202 Map04115 Map05210 Map05212 Map05220 Map05222 Map05215 Map05226 Map04932 Map05012 Map05221 Map05225 | Pathways in cancer MicroRNAs in cancer Pathways of neurodegeneration-multiple diseases Transcriptional misregulation in cancer p53 signaling pathway Colorectal cancer Pancreatic cancer Chronic myeloid leukemia Small cell lung cancer Prostate cancer Gastric cancer Non-alcoholic fatty liver disease Parkinson disease Acute myeloid leukemia Hepatocellular carcinoma |
PDCD1 | (CTG)6 | Map04660 Map05235 | T cell receptor signaling pathway PD-L1 expression and PD-1 checkpoint pathway in cancer |
WAS | (ATG)6 | Map04933 Map04936 Map05231 | AGE-RAGE signaling pathway in diabetic complications Alcoholic liver disease Choline metabolism in cancer |
HDAC5 | (AGC)5 (GAC)5 (GGA)5 | Map05203 Map05206 | Viral carcinogenesis MicroRNAs in cancer |
MYH9 | (GGA)5 | Map05130 | Pathogenic Escherichia coli infection |
JAG2 | (GCT)5 | Map05200 Map05224 | Pathways in cancer Breast cancer |
NOTCH4 | (GCT)5 | Map05206 Map05224 Map05200 | MicroRNAs in cancer Breast cancer Pathways in cancer |
Bana N Á, Nyiri A, Nagy J, Frank K, Nagy T, Stéger V, Schiller M, Lakatos P, Sugár L, Horn P, Barta E, Orosz L. 2018. The red deer Cervus elaphus genome CerEla1.0: sequencing, annotating, genes, and chromosomes. Molecular Genetics and Genomics, 293 (3): 665-684. | |
Chen C J, Chen H, Zhang Y, Thomas H R, Margaret H F, He Y H, Xia R. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13 (8): 1194-1202. | |
Du L, Li Y, Zhang X, Yue B. 2013. A user‑friendly program for reporting distribution and building databases of microsatellites from genome sequences. The Journal of Heredity, 104: 154-157. | |
Du L M, Zhang C, Liu Q, Zhang X Y, Yue B S. 2018. Krait: an ultrafast tool for genome-wide survey of microsatellites and primer design. Bioinformatics, 34 (4): 681-683. | |
Duval A, Hamelin R. 2002. Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Research, 62 (9): 2447-2454. | |
Duval A, Gayet J, Zhou X P, Iacopetta B, Thomas G, Hamelin R. 1999. Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Research, 59 (17): 4213-4215. | |
Fan Z X, Li W J, Jin J, Cui K, Yan C C, Peng C J, Jian Z Y, Bu P, Price M, Zhang X Y, Shen Y M, Li J, Qi W H, Yue B S. 2018. The draft genome sequence of forest musk deer (Moschus berezovskii). Giga Science, 7 (4): giy038. | |
Jiang X M, Hu T Z, Xiang X S, Qi W H. 2015. Statistics and bioinformatics analysis of microsatellite sequence in poplar whole genomes. Southwest China Journal of Agricultural Sciences, 28 (2): 527-533. (in Chinese) | |
Jin P, Warren S T. 2000. Understanding the molecular basis of fragile X syndrome. Human Molecular Ggenetics, 9 (6): 901-908. | |
Kashi Y, King D, Soller M. 1997. Simple sequence repeats as a source of quantitative genetic variation. Trends in Genetics, 13 (2): 74-78. | |
Li W J, Li Y Z, Du L M, Huang J, Shen Y M, Zhang X Y, Yue B S. 2014. Comparative analysis of microsatellite sequences distribution in the genome of giant panda and polar bear. Sichuan Journal of Zoology, 33 (6): 874-878 (in Chinese) | |
Li Y C. 2004. Microsatellites within genes: structure, function, and evolution. Molecular Biology and Evolution, 21 (6): 991-1007. | |
Lu T, Wang C, Du C, Liu S, Shen Y M, Zhang X Y, Yue B S. 2017. Distribution regularity of microsatellites in Moschus berezovskii genome. Sichuan Journal of Zoology, 36 (4): 420-424. (in Chinese) | |
Metzgar D, Wills C. 2000. Evidence for the adaptive evolution of mutation rates. Cell, 101 (6): 581-584. | |
Montgelard C, Catzeflis F, Douzery E. 1997. Phylogenetic relationships among cetartiodactyls andcetaceans as deduced from the comparison of cytochrome b and 12S RNA mitochondrial sequences. Molecular Biology Evolution, 14: 550-559. | |
O’Dushlaine C T, Edwards R J, Park S D, et al. 2005. Tandem repeat copy-number variation in protein-coding regions of human genes. Genome Biology, 6 (8): R69. | |
Ohtaishi N, Gao Y. 1990. A review of the distribution of all species of deer (Tragulidae, Moschidae and Cervidae) in China. Mammal Review, 20 (2-3): 125-144. | |
Qi W H, Jiang X M, Xiao G S, Huang X Y, Du L M. 2013. Seeking and bioinformatics analysis of microsatellite sequence in the genomes of cow and sheep. Acta Veterinaria et Zootechnica Sinica, 44 (11): 1724-1733. (in Chinese) | |
Qi W H, Lu T, Zheng C L, Jiang X M, Jie H, Zhang X Y, Yue B S, Zhao G J. 2020.Distribution patterns of microsatellites and development of its marker in different genomic regions of forest musk deer genome based on high throughput sequencing. Aging, 12 (5): 4445-4462. | |
Sermon K, Seneca S, Rycke M D, Goossens V, Van de Velde H, De Vos A, Platteau P, Lissens W, Van Steirteghem A, Liebaers I. 2001. PGD in the lab for triplet repeat diseases‒myotonic dystrophy, Huntington’s disease and Fragile‒X syndrome. Molecular and Cellular Endocrinology, 183: S77-S85. | |
Schwartz S, Yamamoto H, Navarro M, Maestro M, Reventós J, Perucho M. 1999. Frameshift mutations at mononucleotide repeats in caspase - 5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Research, 59 (12): 2995-3002. | |
Subramanian S, Mishra RK, Singh L. 2003. Genome‑wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biology, 4 (2): 1-10. | |
Timchenko N A, Iakova P, Cai Z J, Smith J R, Timchenko L T. 2001. Molecular basis for impaired muscle differentiation in myotonic dystrophy. Molecular and Cellular Biology, 21 (20): 6927-6938. | |
Vassileva V, Millar A, Briollais L, Chapman W, Bapat B. 2002. Genes involved in DNA repair are mutational targets in endometrial cancers with microsatellite instability. Cancer Research, 62 (14): 4095-4099. | |
Wang X H, Pan X F, Li H Q, Duan F. 2016. Advances in the studies of the expansion of (CAG)n·(CTG)n trinucleotide repeats and mecha-nisms underlying its related diseases. International Journal of Genetics, 39 (5): 274-281. (in Chinese) | |
Wang Z L, Huang J, Du L M, Li W J, Yue B S, Zhang X Y. 2013. Comparison of microsatellites between the genomes of Tetranychus urticae and Ixodes scapularis . Sichuan Journal of Zoology, 32 (4): 481-486. (in Chinese) | |
Yi L, Dalai M G, Su R N, Lin W L, Erdenedalai M, Luvsantseren B, Chimedtseren C, Wang Z, Hasi S R. 2020. Whole‑genome sequencing of wild Siberian musk deer (Moschus moschiferus) provides insights into its genetic features. BMC Genomics, 21(1): 108. | |
Yin Y, Fan H Z, Zhou B T, Hu Y B, Fan G Y, Wang J H, Zhou F, Nie W H, Zhang C Z, Liu L, Zhong Z Y, Zhu W B, Liu G C, Lin Z S, Liu C, Zhou J, Huang G P, Li Z H, Yu J P, Zhang Y L, Yang Y, Zhuo B Z, Zhang B W, Chang J, Qian H Y, Peng Y M, Chen X Q, Chen L, Li Z P, Zhou Q, Wang W, Wei F W. 2021. Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer. Nature Communication, 12 (1): 6858. | |
Yuki M, Masumi I, Shujiro O, Yoshizawa A C, Minoru K. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research, 35 (Web Server issue): W182-W185. | |
丁戈, 姚南, 吴琼, 刘恒, 郑国锠. 2008. 着丝粒结构与功能研究的新进展. 植物学通报, 25 (2): 149-160. | |
王希恒, 潘学峰, 李红权, 段斐. 2016. (CAG)n·(CTG)n三核苷酸重复序列扩增及相关疾病机制研究进展. 国际遗传学杂志, 39 (5): 274-281. | |
卢婷, 王晨, 杜超, 刘姝, 沈咏梅, 张修月, 岳碧松. 2017. 林麝全基因组微卫星分布规律研究. 四川动物, 36 (4): 420-424. | |
刘志霄, 盛和林. 2000. 我国麝的生态研究与保护问题概述. 动物学杂志, 35 (3): 54-57. | |
李午佼, 李玉芝, 杜联明, 黄杰, 沈咏梅, 张修月, 岳碧松. 2014. 大熊猫和北极熊基因组微卫星分布特征比较分析. 四川动物, 33 (6): 874-878. | |
杨述林, 王志刚, 樊斌, 刘榜, 李奎. 2003. 微卫星及其功能研究. 湖北农业科学, 2003 (6): 91-93. | |
汪自立, 黄杰, 杜联明, 李午佼, 岳碧松, 张修月. 2013. 二斑叶螨和肩突硬蜱基因组微卫星分布规律研究. 四川动物, 32 (4): 481-486. | |
戚文华, 蒋雪梅,肖国生, 黄小云, 杜联明. 2013. 牛和绵羊全基因组微卫星序列的搜索及其生物信息学分析. 畜牧兽医学报, 44 (11): 1724-1733. | |
蒋雪梅, 胡廷章, 向兴胜, 戚文华. 2015. 杨树全基因组微卫星序列的统计及其生物信息学分析. 西南农业学报, 28 (2): 527-533. |
[1] | YU Miaojie, XU Zhongxian, JIANG Xuemei, WANG Chunhua, ZHAO Chanjuan, QI Wenhua, JIE Hang. The expression profile of miRNA in the different tissues of forest musk deer (Moschus berezovskii) [J]. ACTA THERIOLOGICA SINICA, 2023, 43(6): 723-733. |
[2] | Xuefeng SHAO, Xiaoying PING, Yueyuan LI, Long CHEN, Zhiwen NIE, Yuanman HU, Yuehui LI. The pellet-decay rate of red deer (Cervus elaphus) in the Lesser Xing’an Mountains [J]. ACTA THERIOLOGICA SINICA, 2023, 43(2): 157-163. |
[3] | Feng JIANG, Pengfei SONG, Jingjie ZHANG, Hongmei GAO, Haijing WANG, Zhenyuan CAI, Daoxin LIU, Tongzuo ZHANG. Comparative analysis of gut microbial composition and functions of forest musk deer in different breeding centres [J]. ACTA THERIOLOGICA SINICA, 2023, 43(2): 129-140. |
[4] | ZHOU Liangjun, WANG Lin, WEI Kaili, ZHANG Minghai, ZHANG Weiqi. Winter diet of wild red deer (Cervus elaphus xanthopygus) in the forestgrassland ecotone in Inner Mongolia, China [J]. ACTA THERIOLOGICA SINICA, 2022, 42(3): 240-249. |
[5] | ZHANG Zhao, ZHANG Rui, LI Xiaoyu, Saihan, YANG Zhendong, HAN Zhiqing, BAO Weidong. Genetic diversity and sex structure of red deer population in Saihanwula Nature Reserve, Inner Mongolia [J]. ACTA Theriologica Sinica, 2021, 41(1): 42-50. |
[6] | GAO Hui, QIAO Fujie, TENG Liwei, LI Junle, YU Mengqi, LIU Zhensheng. Genetic diversity and structure of the Alashan red deer (Cervus elaphus alashanicus) in Helan Mountains, China [J]. ACTA THERIOLOGICA SINICA, 2020, 40(5): 458-466. |
[7] | WANG Jing, BAI Ruidan, CAI Yonghua, LI Yong, CHENG Jianguo, FU Wenlong, ZHOU Mi, SHENG Yan, MENG Xiuxiang. The musk secretion rhythm and the influencing factors in captive forest musk deer [J]. ACTA THERIOLOGICA SINICA, 2020, 40(5): 485-492. |
[8] | LIU Jiahui, WANG Yan, BIAN Kun, TANG Jie, WANG Weifeng, GUO Linwen, WANG Bo, FANG Gu, ZHAO Lan, QI Xiaoguang. Home range utilization and individual dispersal of re-introduced forest musk deer(Moschus berezovskii) [J]. ACTA THERIOLOGICA SINICA, 2020, 40(2): 109-119. |
[9] | WANG Dou, XU Guan, WANG Hongyong, HE Sen, BU Shuhai, ZHENG Xueli. Study on polymorphisms of microsatellites DNA of Chinese captive forest musk deer(Moschus berezovskii) [J]. ACTA THERIOLOGICA SINICA, 2019, 39(6): 599-607. |
[10] | FANG Xuan, SUN Taifu, CAI Yonghua, DONG Xia, LI Yong, ZHOU Mi, MENG Xiuxiang. Activity of the captive forest musk deer(Moschus berezovskii) and its relationships with social affinity [J]. ACTA THERIOLOGICA SINICA, 2019, 39(5): 531-536. |
[11] | ZHAO Guijun, FENG Xiaolan, ZHU Jibin, ZHENG Chengli, JIE Hang, ZENG Dejun, ZHANG Chenglu, QI Wenhua. Comparative analysis of fecal microbiota of captive musk deer in juvenile and adult [J]. ACTA THERIOLOGICA SINICA, 2019, 39(3): 266-275. |
[12] | YAN Jingyan, LIN Gonghua, CHEN Hongjian, LI Qian, QIN Wen, SU Jianping, ZHANG Tongzuo. Genetic structure of the Himalayan marmot(Marmota himalayana)population in eastern Qinghai Province [J]. ACTA THERIOLOGICA SINICA, 2018, 38(5): 458-466. |
[13] | Amila Ablat,Risalat Trudy,Aysajan Tohti,Rizihan Abduheni,ZHOU Canlin,Mahmut Halik. Intestinal parasites of Tianshan red deer (Cervus elaphus songaricus)in Nanshan Mountains areas in Xinjiang [J]. , 2014, 34(1): 87-92. |
[14] | ZHANG Mingchun,LI Zhigang,HU Tianhua,WANG Jifei,WANG Xiaoming. Distribution and group size of red deer (Cervus elaphus)in Ningxia He- lan Mountain National Nature Reserve,China [J]. , 2012, 32(4): 318-324. |
[15] | LIU Zhensheng,ZHANG Mingming,LI Zhigang,HU Tianhua,ZHAI Hao. Feeding and bedding habitat selection by red deer (Cervus elaphus alxaicus) during winter in the Helan Mountains,China [J]. , 2009, 29(2): 133-141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||