兽类学报 ›› 2022, Vol. 42 ›› Issue (6): 677-686.DOI: 10.16829/j.slxb.150587
张修静1, 王恒1, 钟秋梅1, 杨晨希1,2, 王建礼1,2()
收稿日期:
2021-07-10
接受日期:
2022-06-21
出版日期:
2022-11-30
发布日期:
2022-12-02
通讯作者:
王建礼
作者简介:
张修静 (2001- ),女,本科生,主要从事动物生理生态学研究;基金资助:
Xiujing ZHANG1, Heng WANG1, Qiumei ZHONG1, Chenxi YANG1,2, Jianli WANG1,2()
Received:
2021-07-10
Accepted:
2022-06-21
Online:
2022-11-30
Published:
2022-12-02
Contact:
Jianli WANG
摘要:
冬眠是动物应对冬季低温和食物匮乏的一种生存策略。达乌尔黄鼠 (Spermophilus dauricus) 是典型的贮脂类冬眠动物。为研究冬眠动物肾脏的适应机制,本实验采用组织学、血液生化分析及酶联免疫方法检测了夏季活动期 (7月) 、冬眠期 (12月) 和早春出眠后 (3月) 达乌尔黄鼠肾单位形态学及血清肌酐、尿素和抗利尿激素 (ADH) 的变化,并用qPCR方法检测了肾脏水通道蛋白基因 (AQP1、AQP2和AQP3)、ADH受体 (V2R) 及内皮型一氧化氮合酶基因 (eNOS) 的表达。结果发现,冬眠期和早春出眠期的达乌尔黄鼠肾小球密度、近曲小管和远曲小管的相对管径、皮质部近曲小管数与远曲小管数比值均低于夏季活动期;冬眠期血清肌酐和尿素浓度高于夏季活动期和早春出眠期,ADH浓度及其受体V2R基因表达低于夏季活动期;冬眠期AQP1基因表达高于早春出眠期,AQP3基因表达低于夏季活动期,AQP2基因表达无显著差异;冬眠期eNOS基因表达低于早春出眠期。这些结果表明冬眠的达乌尔黄鼠表现出较低的肾功能;不同时期的水通道蛋白,eNOS及ADH表现出适应性的功能调节。该实验结果丰富了对冬眠动物肾脏适应机制的认识。
中图分类号:
张修静, 王恒, 钟秋梅, 杨晨希, 王建礼. 冬眠和非冬眠状态达乌尔黄鼠肾单位及相关功能因子的比较[J]. 兽类学报, 2022, 42(6): 677-686.
Xiujing ZHANG, Heng WANG, Qiumei ZHONG, Chenxi YANG, Jianli WANG. The variations of nephrons and relevant function factors between hibernating and non-hibernating Daurian ground squirrels[J]. ACTA THERIOLOGICA SINICA, 2022, 42(6): 677-686.
目标基因 Target gene | 引物序列 (5′-3′) Primer sequence (5′-3′) | 片段大小 Product length (bp) |
---|---|---|
β-actin forward | ACTCGTCGTACTCCTGCTT | 223 |
β-actin reverse | AAGACCTCTATGCCAACACC | |
AQP1 forward | TCAACCCAGCCGTCACAC | 189 |
AQP1 reverse | CCTGGCCTGAGTTCACAC | |
AQP2 forward | GAGATCACGCCAGCAGAAAT | 183 |
AQP2 reverse | GAAACCGATGGAGAGAGCAG | |
AQP3 forward | GTGATGTTTGGCTGTGGGTC | 161 |
AQP3 reverse | GCAAAGGTCACAGCAGGATT | |
V2R forward | CGTCAAGTACCTGCAGATGG | 171 |
V2R reverse | CTGAGAAGAAGCGAGAAGGC | |
eNOS forward | CACCGGCATCAGACCACA | 189 |
eNOS reverse | GCCGACTCTGTACTTTCCTT |
表1 实验所用引物信息
Table 1 Primers information used in the experiment
目标基因 Target gene | 引物序列 (5′-3′) Primer sequence (5′-3′) | 片段大小 Product length (bp) |
---|---|---|
β-actin forward | ACTCGTCGTACTCCTGCTT | 223 |
β-actin reverse | AAGACCTCTATGCCAACACC | |
AQP1 forward | TCAACCCAGCCGTCACAC | 189 |
AQP1 reverse | CCTGGCCTGAGTTCACAC | |
AQP2 forward | GAGATCACGCCAGCAGAAAT | 183 |
AQP2 reverse | GAAACCGATGGAGAGAGCAG | |
AQP3 forward | GTGATGTTTGGCTGTGGGTC | 161 |
AQP3 reverse | GCAAAGGTCACAGCAGGATT | |
V2R forward | CGTCAAGTACCTGCAGATGG | 171 |
V2R reverse | CTGAGAAGAAGCGAGAAGGC | |
eNOS forward | CACCGGCATCAGACCACA | 189 |
eNOS reverse | GCCGACTCTGTACTTTCCTT |
图 1 活动期、冬眠期和出眠期达乌尔黄鼠肾脏的组织结构. a:肾脏矢状切面 (标尺 = 1 000 μm) ;b:肾脏皮质 (标尺 = 100 μm) ;c: 肾脏髓质 (标尺 = 100 μm) ;d: 夏季活动期肾小球;e:冬眠期肾小球;f:早春出眠期肾小球;g:夏季活动期皮质部肾小管;h:冬眠期皮质部肾小管;i:早春出眠期皮质部肾小管;GL:肾小球;DT:远曲小管;PT:近曲小管. 标尺 = 20 μm
Fig. 1 The renal histological structure of Daurian ground squirrels among the active, hibernating and arousal periods. a: Renal sagittal plane (Scale bar = 1 000 μm); b: Renal cortex (Scale bar = 100 μm); c: Renal medulla (Scale bar = 100 μm); d: Glomerulus in summer active period; e: Glomerulus in winter hibernating period; f: Glomerulus in early spring arousal period; g: Cortical tubule in summer active period; h: Cortical tubule in winter hibernating period; i: Cortical tubule in early spring arousal period; GL: glomerulus; DT: distal convoluted tubule; PT: proximal convoluted tubule. Scale bar = 20 μm
参数 Parameters | 活动期 Active period (n = 6) | 冬眠期 Hibernating period (n = 6) | 出眠期 Arousal period (n = 5) |
---|---|---|---|
皮质浅层近曲小管相对管径 RDPS | 0.94 ± 0.01a | 0.82 ± 0.02b | 0.75 ± 0.02c |
皮质中层近曲小管相对管径 RDPM | 0.94 ± 0.01a | 0.80 ± 0.02b | 0.75 ± 0.02c |
髓旁近曲小管相对管径 RDPP | 0.93 ± 0.01a | 0.80 ± 0.01b | 0.75 ± 0.02c |
皮质浅层远曲小管相对管径 RDDS | 1.23 ± 0.02a | 1.04 ± 0.01b | 0.94 ± 0.01c |
皮质中层远曲小管相对管径 RDDM | 1.23 ± 0.01a | 1.05 ± 0.01b | 0.94 ± 0.02c |
髓旁远曲小管相对管径 RDDP | 1.22 ± 0.01a | 1.03 ± 0.01b | 0.94 ± 0.01c |
皮质部近曲小管数 / 远曲小管数 CPT / CDT | 2.74 ± 0.05a | 2.36 ± 0.14b | 2.73 ± 0.12a |
近髓质近曲小管数 / 远曲小管数 JPT / JDT | 3.83 ± 0.13a | 3.39 ± 0.12a | 3.79 ± 0.17a |
肾小球密度 GD (ind./mm2) | 8.82 ± 0.52a | 7.22 ± 0.34b | 7.29 ± 0.49b |
表 2 活动期、冬眠期和出眠期达乌尔黄鼠肾单位的组织学参数 (mean ± SE)
Table 2 The histological parameters of nephrons in Daurian ground squirrels among the active, hibernating and arousal periods (mean ± SE)
参数 Parameters | 活动期 Active period (n = 6) | 冬眠期 Hibernating period (n = 6) | 出眠期 Arousal period (n = 5) |
---|---|---|---|
皮质浅层近曲小管相对管径 RDPS | 0.94 ± 0.01a | 0.82 ± 0.02b | 0.75 ± 0.02c |
皮质中层近曲小管相对管径 RDPM | 0.94 ± 0.01a | 0.80 ± 0.02b | 0.75 ± 0.02c |
髓旁近曲小管相对管径 RDPP | 0.93 ± 0.01a | 0.80 ± 0.01b | 0.75 ± 0.02c |
皮质浅层远曲小管相对管径 RDDS | 1.23 ± 0.02a | 1.04 ± 0.01b | 0.94 ± 0.01c |
皮质中层远曲小管相对管径 RDDM | 1.23 ± 0.01a | 1.05 ± 0.01b | 0.94 ± 0.02c |
髓旁远曲小管相对管径 RDDP | 1.22 ± 0.01a | 1.03 ± 0.01b | 0.94 ± 0.01c |
皮质部近曲小管数 / 远曲小管数 CPT / CDT | 2.74 ± 0.05a | 2.36 ± 0.14b | 2.73 ± 0.12a |
近髓质近曲小管数 / 远曲小管数 JPT / JDT | 3.83 ± 0.13a | 3.39 ± 0.12a | 3.79 ± 0.17a |
肾小球密度 GD (ind./mm2) | 8.82 ± 0.52a | 7.22 ± 0.34b | 7.29 ± 0.49b |
图2 活动期、冬眠期和出眠期达乌尔黄鼠血清肌酐、尿素和ADH浓度.图柱上不同字母代表显著性差异,P < 0.05
Fig. 2 The concentrations of serum creatinine, urine and ADH of Daurian ground squirrels among the active, hibernating and arousal periods. Different letters on the columns indicate significant differences, P < 0.05
图3 活动期、冬眠期和出眠期达乌尔黄鼠肾脏AQP1、AQP2、AQP3、V2R和eNOS基因的表达. 柱上不同字母代表显著性差异,P < 0.05
Fig. 3 The renal gene expression of AQP1, AQP2, AQP3, V2R and eNOS in Duarian ground squirrels among the active, hibernating and arousal periods. Different letters on the columns indicate significant differences, P < 0.05
Andrews M T. 2019. Molecular interactions underpinning the phenotype of hibernation in mammals. Journal of Experimental Biology, 222:jeb160606. | |
Brown D C, Mulhausen R O, Andrew D J, Seal U S. 1971. Renal function in anesthetized dormant and active bears. The American Journal of Physiology, 220 (1): 293-298. | |
Carey H V, Andrews M T, Martin S L. 2003. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiological Reviews, 83 (4): 1153-1181. | |
Dang K, Gao Y F. 2016. Physiological adaptation of skeletal muscles and potential mechanism in hibernators. Chinese Journal of Zoology, 51 (3): 497-506. (in Chinese) | |
Diaz G B, Ojeda R A. 1999. Kidney structure and allometry of Argentine desert rodents. Journal of Arid Environments, 41 (4):453-461. | |
Elgot A, El Hiba O, Belkouch M, Gamrani H. 2018. The underlying physiological basis of the desert rodent Meriones shawi’s survival to prolonged water deprivation: central vasopressin regulation on peripheral kidney water channels AQPs-2. Acta Histochemica, 120 (2): 65-72. | |
Feng N Y, Junkins M S, Merriman D K, Bagriantsev S N, Gracheva E O. 2019. Osmolyte depletion and thirst suppression allow hibernators to survive for months without water. Current Biology, 29 (18): 3053-3058. | |
Gallardo P A, Cortes A, Bozinovic F. 2005. Phenotypic flexibility at the molecular and organismal level allows desert-dwelling rodents to cope with seasonal water availability.Physiological and Biochemical Zoology, 78: 145-152. | |
García N H, Pomposiello S I, Garvin J L.1996. Nitric oxide inhibits ADH-stimulated osmotic water permeability in cortical collecting ducts. American Journal of Physiology, 270 (1Pt2): F206-210. | |
Hammond K A, Janes D N. 1998. The effects of increased protein intake on kidney size and function. The Journal of Experimental Biology, 201 ( Pt13): 2081-2090. | |
Hao S C, Sun J H, Yu K L, Bi P, Song J S, Xia W. 1994. Ultrastructure observation of kidneys and adrenal glands of hibernal animals (Hedgehogs) in different periods. Journal of Tianjin Normal University (Natural Science Edition), 14 (1): 47-51.(in Chinese) | |
Hou T D, Zhou H, Yang R, Cheng F, Ma Y L, Xu R. 2011. The expression changes of c‑fos in the paraventricular nucleus of hyphothalamus and AQP2 in the kidney at stress rats during water deprivation. Journal of Northwest Normal University (Natural Science), 47 (2): 97-101. (in Chinese) | |
Huang Z X. 2012. The expression of aquaporin AQP1/AQP2 in the Bactrian camel’s kidney.Master thesis. Lanzhou: Lanzhou University. (in Chinese) | |
Ishibashi K, Kondo S, Hara S, Morishita Y. 2011. The evolutionary aspects of aquaporin family.American Journal of Physiology . Regulatory, Integrative and Comparative Physiology, 300 (3): 566-576. | |
Jani A, Epperson E, Martin J, Arijana P, Danica L, Sandra L M, Charles L E. 2011. Renal protection from prolonged cold ischemia and warm reperfusion in hibernating squirrels. Transplantation, 92 (11): 1215-1221. | |
Jani A, Martin S L, Jain S, Keys D, Edelstein C L. 2013. Renal adaptation during hibernation. American Journal of Physiology. Renal Physiology, 305 (11): F1521-1532. | |
Jia D. 2011. The micro- and ultra-structural characteristics of the kidney and the testis in the frog (Rana chensinensis), in Laoshan Mountains and their adaptation to the physiological function. Master thesis. Shenyang: Shenyang Normal University. (in Chinese) | |
Karpovich S A, Toien O, Buck C L, Barnes B M. 2009. Energetics of arousal episodes in hibernating arctic ground squirrels. Journal of Comparative Physiology B, 179 (6): 691-700. | |
Knepper M A, Kwon T H, Nielsen S. 2015. Molecular physiology of water balance. New England Journal of Medicine, 372 (14): 1349-1358. | |
Li J, Wang L, Luo X L, Luo X L, Guan J Q, Zhang X F. 2021. Cloning of AQP1 and AQP3 genes and their locations and expressions in different tissues of yak (Bos grunniens). Acta Theriologica Sinica, 41 (1): 51-58. (in Chinese) | |
Liu Y, Wang L Z. 2014. Comparison research of structure of kidneys in three rodents. Journal of Shaanxi Institute of Education, 30 (2): 117-120. (in Chinese) | |
Liu Y H, Long J, He L Q, Li T J, He X G, Ou Y L, Li J Z, Yin Y L. 2020. Advances in research on the effects of aquaporins on animal health. Scientia Sinica (Vitae), 50 (4): 427-437. (in Chinese) | |
Liu Z L.1992.Study on the relative medullary thickness of Brandt’s voles and ground squirrels. Chinese Journal of Vector Biology and Control, 3 (3): 159-161. (in Chinese) | |
Nouri Z, Zhang X Y, Wang D H. 2020. The physiological and molecular mechanisms to maintain water and salt homeostasis in response to high salt intake in Mongolian gerbils (Meriones unguiculatus).Journal of Comparative Physiology B, 190 (5):641-654. | |
Rice S A, ten Have G A M, Reisz J A, Gehrke S, Stefanoni D, Frare C, Barati Z, Coker R H, D’Alessandro A, Deutz N E P, Drew K L. 2020. Nitrogen recycling buffers against ammonia toxicity from skeletal muscle breakdown in hibernating arctic ground squirrels. Nature Metabolism, 2 (12): 1459-1471. | |
Sandovici M, Henning R H, Hut R A, Arjen M S, Anne H E, Harry V G, Leo E D. 2004. Differential regulation of glomerular and interstitial endothelial nitric oxide synthase expression in the kidney of hibernating ground squirrel. Nitric Oxide, 11 (2): 194-200. | |
Srivastava A, Kumar S V, Fiddes I, Sheehan S M, Seger R L, Barter M E, Neptune‑Bear S, Lindqvist C, Korstanje R. 2019. Genome assembly and gene expression in the American black bear provides new insights into the renal response to hibernation. DNA Research, 26 (1): 37-44. | |
Sun X Y, Gao Y F, Wang Q, Jiang S F, Guo S P, Liu K. 2012. The artificial feeding, breeding and researchon hibernation bouts of the Daurian ground squirrel (Spermophilus daurocus). Acta Theriologica Sinica, 32 (4): 356-361. (in Chinese) | |
Takei Y, Bartolo R C, Fujihara H, Ueta Y, Donald J A. 2012. Water deprivation induces appetite and alters metabolic strategy in Notomys alexis: unique mechanisms for water production in the desert. Proceedings of the Royal Society B Biological Sciences, 279 (1738): 2599-2608. | |
Talmatamar A, Chaabane I, Salem S, Touati H, Remana S, Chevalier C, Moudilou E N, Exbrayat J M, Barka‑Dahane Z. 2020. Kidney functional morphology variations between spring and winter in the saharan male lizard Uromastyx acanthinura (sauria, agamidae), with special reference to body water economy. Issue and Cell, 67 (2): 101448. | |
Wang D H, Zhao Z J, Zhang X Y, Zhang Z Q, Xu D L, Xing X, Yang S M, Wang Z K, Gao Y F, Yang M. 2021. Research advances and prespectives in mammal physiological ecology in China. Acta Theriologica Sinica, 41 (5): 537-555.(in Chinese) | |
Wang H, He C, Yang C X, Ma X M, Wang J L. 2020. Comparison on sociability and social behaviors between wild and laboratory F1 generation Daurian ground squirrels (Spermophilus dauricus). Chinese Journal of Wildlife, 41 (3): 580-588. (in Chinese) | |
Wang Y. 2019. Seasonal expressions of the reproductive hormones’ receptors in the uterus of the wild Daurian ground squirrels (Spermophilus dauricus). Master thesis. Beijing: Beijing Forestry University. (in Chinese) | |
Xing X, Tang G B, Sun M Y, Yu C, Song S Y, Liu X Y, Yang M, Wang D H. 2016. Leptin regulates energy intake but fails to facilitate hibernation in fattening Daurian ground squirrels (Spermophilus dauricus). Journal of Thermal Biology, 57 (1): 35-43. | |
Xu M M, Wang D H. 2016. Water deprivation up‑regulates urine osmolality and renal aquaporin 2 in Mongolian gerbils (Meriones unguiculatus). Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology, 194: 37-44. | |
Yang M, Xing X, Guan S J, Zhao Y, Wang Z Y, Wang D H. 2011. Hibernation patterns and changes of body temperature in Daurian ground squirrels (Spermophilus dauricus) during hibernation. Acta Theriologica Sinica, 31 (4): 387-395. (in Chinese) | |
Yuan J L, Xu X H, Shi S, Zhang Y, Xu Y M. 2019. Morphological comparison of kidneys between Meriones meridianus and SD rats. Acta Laboratorium Animalis Scientia Sinica, 27 (6): 765-769. (in Chinese) | |
Zancanaro C, Malatesta M, Mannello F, Vogel P, Fakan S. 1999. The kidney during hibernation and arousal from hibernation. A natural model of organ preservation during cold ischaemia and reperfusion. Nephrology, Dialysis, Transplantation, 14 (8): 1982-1990. | |
Zhang C Y, Hou T D, Cheng F, Sang Q. 2014. Expression of AQP1, 2 proteins in kidney of filial Meriones meridianus . Chinese Journal of Zoology, 49 (2): 162-169. (in Chinese) | |
Zhang G X, Zhao J, Liu B Y, Zhang Y F, Xie M. 2016. Comparative study of effects of spleen-strengthening recipes on water-electrolyte metabolism and water transport in rats with spleen-deficiency syndrome. Journal of Guangzhou University of Traditional Chinese Medicine, 33 (1): 51-55. (in Chinese) | |
Zhang M, Wang D H. 2018. Comparison of renal morphology in five rodent species from Inner Mongolia grasslands. Acta Theriologica Sinica, 38 (1): 36-45. (in Chinese) | |
王宇. 2019.生殖激素受体在野生达乌尔黄鼠子宫内的季节性表达研究. 北京: 北京林业大学硕士学位论文. | |
王恒, 赫晨, 杨晨希, 马小梅, 王建礼. 2020. 野生达乌尔黄鼠与室内F1代的社会性及社会行为比较. 野生动物学报, 41 (3): 580-588. | |
王德华, 赵志军, 张学英, 张志强, 徐德立, 邢昕, 杨生妹, 王政昆, 高云芳, 杨明.2021. 中国哺乳动物生理生态学研究进展与展望. 兽类学报, 41 (5): 537-555. | |
刘莹, 王立志. 2014. 三种啮齿类动物肾脏结构比较研究. 陕西学前师范学院学报, 30 (2): 117-120. | |
刘永辉, 龙静, 何流琴, 李铁军, 何兴国, 欧阳龙, 李建中, 印遇龙. 2020. 水通道蛋白对动物机体健康影响研究进展. 中国科学: 生命科学, 50 (4): 427-437. | |
刘志龙. 1992. 布氏田鼠和达乌尔黄鼠肾脏指数比较研究. 中国媒介生物学及控制杂志, 3 (3): 159-161. | |
孙小勇, 高云芳, 王琦, 姜山峰, 郭树攀, 刘坤. 2012. 达乌尔黄鼠实验室饲养、繁殖及其冬眠阵. 兽类学报, 32 (4): 356-361. | |
李娟, 王利, 罗晓林, 官久强, 张翔飞. 2021. 牦牛水通道蛋白AQP1和AQP3基因克隆及在不同组织中表达和定位. 兽类学报, 41 (1): 51-58. | |
杨明, 邢昕, 管淑君, 赵岩, 王子英, 王德华. 2011. 达乌尔黄鼠冬眠期间体温的变化和冬眠模式. 兽类学报, 31 (4): 387-395. | |
张梦, 王德华. 2018. 内蒙古草原五种啮齿动物肾脏形态学特征比较. 兽类学报, 38 (1): 36-45. | |
张广霞, 赵静, 刘碧原, 张媛凤, 谢鸣. 2016. 不同健脾方对脾虚模型大鼠水盐代谢及水转运的作用比较. 广州中医药大学学报, 33 (1): 51-55. | |
张春燕, 侯天德, 程昉, 桑秋. 2014. 子午沙鼠子鼠肾中水通道蛋白 1、2的表达. 动物学杂志, 49 (2): 162-169. | |
郝泗城, 孙建华, 宇克莉, 毕平, 孙金生, 夏文. 1994. 不同生活时期冬眠动物 (刺猬) 肾脏与肾上腺超微结构观察. 天津师范大学学报 (自然科学版), 14 (1): 47-51. | |
侯天德, 周涵, 杨荣, 程昉, 马玉兰, 徐瑞. 2011. 大鼠禁水应激下丘脑室旁核c‑fos与肾水通道蛋白2表达的变化. 西北师范大学学报 (自然科学版), 47 (2): 97-101. | |
袁江玲, 徐晓辉, 史深, 张燕, 徐艺玫. 2019. 子午沙鼠与SD大鼠肾脏形态学特征的比较. 中国实验动物学报, 27 (6): 765-769. | |
贾迪. 2011. 中国林蛙肾脏与精巢功能形态的年周变化.沈阳: 沈阳师范大学硕士学位论文. | |
党凯, 高云芳.2016. 冬眠动物骨骼肌生理适应及机制的研究进展.动物学杂志, 51 (3): 497-506. | |
黄祖贤. 2012. 水通道蛋白AQP1 / AQP2在双峰驼肾脏的表达. 兰州: 兰州大学硕士学位论文. |
[1] | 尚正文, 杨明, 王德华, 邢昕. 冬眠动物体温调节机制:褐色脂肪组织的作用[J]. 兽类学报, 2023, 43(5): 608-619. |
[2] | 毛敏, 杨明, 刘新宇. 冬眠对达乌尔黄鼠盲肠菌群的影响[J]. 兽类学报, 2022, 42(4): 420-431. |
[3] | 王恒, 王建礼, 杨晨希, 何娅婷. 达乌尔黄鼠犁鼻器和副嗅球的组织结构及嗅球c-Fos表达的季节变化[J]. 兽类学报, 2021, 41(6): 685-694. |
[4] | 王德华, 赵志军, 张学英, 张志强, 徐德立, 邢昕, 杨生妹, 王政昆, 高云芳, 杨明. 中国哺乳动物生理生态学研究进展与展望[J]. 兽类学报, 2021, 41(5): 537-555. |
[5] | 张永俊, 和育超, 赵娟钧, 陈尧, 李延鹏, 黄志旁, 崔亮伟, 肖文. 云岭自然保护区拉沙山区域亚洲黑熊的活动模式[J]. 兽类学报, 2021, 41(2): 136-143. |
[6] | 李娟, 王利, 罗晓林, 官久强, 张翔飞. 牦牛水通道蛋白AQP1和AQP3基因克隆及在不同组织中表达和定位[J]. 兽类学报, 2021, 41(1): 51-58. |
[7] | 张梦 王德华. 内蒙古草原五种啮齿动物肾脏形态学特征比较[J]. 兽类学报, 2018, 38(1): 36-45. |
[8] | 白鸽 杨明 宋士一 彭霞 张慧莹 刘新宇. 实验室条件下达乌尔黄鼠的越冬繁殖[J]. 兽类学报, 2017, 37(2): 172-178. |
[9] | 邢昕, 汤刚彬, 孙明月, 杨明, 王德华. 瘦素在育肥后达乌尔黄鼠能量平衡及体温调节中的作用[J]. 兽类学报, 2015, 35(4): 379-388. |
[10] | 门丽媛, 宋士一, 刘新宇, 彭霞, 吕铮, 刘帅, 蔡鲁纳, 杨明. 达乌尔黄鼠育肥过程和冬眠期白色脂肪组织糖代谢相关基因的差异表达[J]. 兽类学报, 2015, 35(4): 422-430. |
[11] | 吕铮, 蔡鲁纳, 宋士一, 刘新宇, 彭霞, 杨明. 光照黑暗循环条件下达乌尔黄鼠的冬眠模式和能量消耗[J]. 兽类学报, 2015, 35(4): 398-404. |
[12] | 吕铮 宋士一 杨明 彭霞. 达乌尔黄鼠入眠准备期的体温、代谢率及能量特征[J]. 兽类学报, 2014, 34(4): 348-. |
[13] | 张春燕 侯天德 徐登翠 丁卫刚 张慧瑛. 虎鼬肾组织结构及水通道蛋白1,2 的表达[J]. 兽类学报, 2014, 34(4): 406-. |
[14] | 张建萍 李树伟 于伟江. 塔里木兔肾脏水通道蛋白在适应干旱环境中的作用[J]. , 2013, 33(4): 377-382. |
[15] | 孙小勇 高云芳 王琦 姜山峰 郭树攀 刘坤. 达乌尔黄鼠实验室饲养、繁殖及其冬眠阵[J]. , 2012, 32(4): 356-361. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||