兽类学报 ›› 2023, Vol. 43 ›› Issue (5): 608-619.DOI: 10.16829/j.slxb.150772
尚正文1, 杨明1, 王德华2, 邢昕1
收稿日期:
2022-12-31
修回日期:
2023-04-12
出版日期:
2023-09-30
发布日期:
2023-09-22
通讯作者:
邢昕,E-mail:xingxin@synu.edu.cn
作者简介:
尚正文(1995-),男,硕士研究生,主要从事动物生理生态学研究.
基金资助:
SHANG Zhengwen1, YANG Ming1, WANG Dehua2, XING Xin1
Received:
2022-12-31
Revised:
2023-04-12
Online:
2023-09-30
Published:
2023-09-22
摘要: 褐色脂肪组织(brown adipose tissue,BAT)是哺乳动物特有的适应性产热器官,也是哺乳动物维持恒定体温的重要器官。恒定体温的维持需要付出巨大的能量代价,尤其在环境温度较低的条件下。一些小型哺乳动物通过冬眠这一低体温、低代谢的生理适应策略在食物资源匮乏和(或)环境条件恶劣的情况下有效地减少能量支出。哺乳动物在冬眠期间,体温表现出规律的周期性变化,每个由入眠、深冬眠、出眠和觉醒组成的周期被称为一个冬眠阵。BAT在冬眠动物体温的这一周期变化中扮演重要角色。本文首先介绍了哺乳动物BAT的产热调节机制,包括中枢神经系统对BAT产热的神经支配以及BAT细胞的产热信号的分子通路。随后按照体温调节周期的顺序,介绍了BAT在入眠、深冬眠、出眠和觉醒过程中的产热机制,包括肾上腺素能信号、脂质代谢和线粒体呼吸的作用。最后介绍了储脂类冬眠动物BAT在没有低温和药物刺激条件下发生天然募集的独特表型。
中图分类号:
尚正文, 杨明, 王德华, 邢昕. 冬眠动物体温调节机制:褐色脂肪组织的作用[J]. 兽类学报, 2023, 43(5): 608-619.
SHANG Zhengwen, YANG Ming, WANG Dehua, XING Xin. The roles of brown adipose tissue in thermoregulatory mechanisms of hibernators[J]. ACTA THERIOLOGICA SINICA, 2023, 43(5): 608-619.
Ballinger M A, Andrews M T. 2018. Nature's fat-burning machine:brown adipose tissue in a hibernating mammal. Journal of Experimental Biology, 221 (Suppl 1). Ballinger M A, Hess C, Napolitano M W, Bjork J A, Andrews M T. 2016. Seasonal changes in brown adipose tissue mitochondria in a mammalian hibernator:from gene expression to function. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 311 (2):R325-R336. Bamshad M, Aoki V T, Adkison M G, Warren W S, Bartness T J. 1998. Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 275 (1):R291-R299. Bamshad M, Song C K, Bartness T J. 1999. CNS origins of the sympathetic nervous system outflow to brown adipose tissue. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 276 (6):R1569-R1578. Bargut T C L, Silva-e-Silva A C A G, Souza-Mello V, Mandarim-de Lacerda C A, Aguila M B. 2016. Mice fed fish oil diet and upregulation of brown adipose tissue thermogenic markers. European Journal of Nutrition, 55 (1):159-169. Barnes B M. 1989. Freeze avoidance in a mammal:body temperatures below 0 degrees Celsius in an arctic hibernator. Science, 244 (4912):1593-1595. Barnes B, Ritter R. 1993. Patterns of Body Temperature Change in Hibernating Arctic Ground Squirrels. Life in the Cold:CRC Press, 119-130. Betz M J, Enerbäck S. 2015. Human brown adipose tissue:What we have learned so far. Diabetes, 64 (7):2352-2360. Betz M J, Enerbäck S. 2018. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nature Reviews Endocrinology, 14 (2):77-87. Bordicchia M, Liu D, Amri E Z, Ailhaud G, Dessì-Fulgheri P, Zhang C, Takahashi N, Sarzani R, Collins S. 2012. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. The Journal of Clinical Investigation, 122 (3):1022-1036. Boyer B, Barnes B. 1999. Molecular and metabolic aspects of mammalian hibernation:expression of the hibernation phenotype results from the coordinated regulation of multiple physiological and molecular events during preparation for and entry into torpor. BioScience, 49 (9):713-724. Boyer B B, Barnes B M, Kopecky J, Jacobsson A, Hermanska J. 2019. Molecular Control of Prehibernation Brown Fat Growth in Arctic Ground Squirrels. Life in the Cold:CRC Press, 483-491. Brown J C L, Chung D J, Belgrave K R, Staples J F. 2011. Mitochondrial metabolic suppression and reactive oxygen species production in liver and skeletal muscle of hibernating thirteen-lined ground squirrels. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 302 (1):R15-R28. Brown J C L, Staples J F. 2014. Substrate-specific changes in mitochondrial respiration in skeletal and cardiac muscle of hibernating thirteen-lined ground squirrels. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 184(3):401-414. Buck C L, Barnes B M. 2000. Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 279 (1):R255-R262. Cannon B, Nedergaard J. 2004. Brown adipose tissue:function and physiological significance. Physiological Reviewers, 84 (1):277-359. Carey H V, Andrews M T, Martin S L. 2003. Mammalian hibernation:cellular and molecular responses to depressed metabolism and low temperature. Physiological Reviews, 83 (4):1153-1181. Carpentier A C, Blondin D P, Virtanen K A, Richard D, Haman F, Turcotte E E. 2018. Brown adipose tissue energy metabolism in humans. Front Endocrinol (Lausanne), 9:447. Chartoumpekis D V, Habeos I G, Ziros P G, Psyrogiannis A I, Kyriazopoulou V E, Papavassiliou A G. 2011. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Molecular Medicine, 17 (7):736-740. Cohen P, Kajimura S. 2021. The cellular and functional complexity of thermogenic fat. Nature Reviews Molecular Cell Biology, 22 (6):393-409. Cypess A M, White A P, Vernochet C, Schulz T J, Xue R, Sass C A, Huang T L, Roberts-Toler C, Weiner L S, Sze C, Chacko A T, Deschamps L N, Herder L M, Truchan N, Glasgow A L, Holman A R, Gavrila A, Hasselgren P O, Mori M A, Molla M, Tseng Y H. 2013. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nature Medicine, 19 (5):635-639. Cypess Aaron M, Weiner Lauren S, Roberts-Toler C, Elía Elisa F, Kessler Skyler H, Kahn Peter A, English J, Chatman K, Trauger Sunia A, Doria A, Kolodny Gerald M. 2015. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metabolism, 21 (1):33-38. Dark J, Miller D R, Lewis D A, Fried S K, Bunkin D. 2003. Noradrenaline-induced lipolysis in adipose tissue is suppressed at hibernation temperatures in ground squirrels. Journal of Neuroendocrinology, 15 (5):451-458. Dhakal S, Lee Y. 2019. Transient receptor potential channels and metabolism. Molecules and Cells, 42 (8):569-578. Francois M, Torres H, Huesing C, Zhang R, Saurage C, Lee N, QuallsCreekmore E, Yu S, Morrison C D, Burk D, Berthoud H R, Münzberg H. 2019. Sympathetic innervation of the interscapular brown adipose tissue in mouse. Annals of the New York Academy of Sciences, 1454:3-13. Geiser F, Ruf T. 1995. Hibernation versus daily torpor in mammals and birds:physiological variables and classification of torpor patterns. Physiological Zoology, 68 (6):935-966. Gessner K. 1551. Conradi gesneri medici tiguine historiae animalium lib. I de Quadrupedibus Viviparis, 842 (1):6-9. Grabek K R, Diniz B C, Barsh G S, Hesselberth J R, Martin S L. 2015a. Enhanced stability and polyadenylation of select mRNAs support rapid thermogenesis in the brown fat of a hibernator.Elife, 4:e04517. Grabek K R, Martin S L, Hindle A G. 2015b. Proteomics approaches shed new light on hibernation physiology. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 185 (6):607-627. Haider N, Larose L. 2019. Harnessing adipogenesis to prevent obesity. Adipocyte, 8 (1):98-104. Hampton M, Nelson B T, Andrews M T. 2010. Circulation and metabolic rates in a natural hibernator:an integrative physiological model. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 299 (6):R1478-R1488. Hampton M, Melvin R G, Andrews M T. 2013. Transcriptomic analysis of brown adipose tissue across the physiological extremes of natural hibernation. PLoS ONE, 8 (12):e85157. Heldmaier G, Ortmann S, Elvert R. 2004. Natural hypometabolism during hibernation and daily torpor in mammals. Respiratory Physiology & Neurobiology, 141:317-329. Heller H C, Hammel H T. 1972. CNS control of body temperature during hibernation. Comparative Biochemistry and Physiology Part A:Physiology, 41 (2):349-359. Hindle A G, Martin S L. 2014. Intrinsic circannual regulation of brown adipose tissue form and function in tune with hibernation. American Journal of Physiology-Endocrinology Metabolism, 306(3):E284-E299. Hittel D, Storey K B. 2001. Differential expression of adipose - and heart-type fatty acid binding proteins11The sequences reported in this paper for H-FABP and A-FABP have been deposited in the GenBank database under the accession numbers AF327854 and AF327855, respectively. in hibernating ground squirrels. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1522 (3):238-243. Kanosue K, Crawshaw L I, Nagashima K, Yoda T. 2010. Concepts to utilize in describing thermoregulation and neurophysiological evidence for how the system works. European Journal of Applied Physiology, 109 (1):5-11. Kitao N, Hashimoto M. 2011. Increased thermogenic capacity of brown adipose tissue under low temperature and its contribution to arousal from hibernation in Syrian hamsters. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 302 (1):R118-R125. Kopelman P G. 2000. Obesity as a medical problem. Nature, 404(6778):635-643. Kronfeld-Schor N, Richardson C, Silvia B A, Kunz T H, Widmaier E P. 2000. Dissociation of leptin secretion and adiposity during prehibernatory fattening in little brown bats. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 279 (4):R1277-R1281. Li Y, Wang D M, Ping X D, Zhang Y K, Zhang T, Wang L, Jin L, Zhao W J, Guo M W, Shen F, Meng M Y, Chen X, Zheng Y, Wang J Q, Li D L, Zhang Q, Hu C, Xu L Y, Ma X R. 2022. Local hyperthermia therapy induces browning of white fat and treats obesity. Cell, 185 (6):949-966. e19. Li Y, Schwalie P C, Bast-Habersbrunner A, Mocek S, Russeil J, Fromme T, Deplancke B, Klingenspor M. 2019. SystemsGenetics-Based inference of a core regulatory network underlying white fat browning. Cell Reports, 29 (12):4099-4113. e5. Lim S, Honek J, Cao Y. 2013. Blood vessels in white and brown adipose tissues. In:Cao Y ed. Angiogenesis in Adipose Tissue. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8069-3_5 Lowell B B, Spiegelman B M. 2000. Towards a molecular understanding of adaptive thermogenesis. Nature, 404 (6778):652-660. MacCannell A, Sinclair K, Friesen-Waldner L, McKenzie C A, Staples J F. 2017. Water-fat MRI in a hibernator reveals seasonal growth of white and brown adipose tissue without cold exposure. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 187 (5):759-767. MacCannell A D V, Sinclair K J, McKenzie C A, Staples J F. 2019. Environmental temperature effects on adipose tissue growth in a hibernator. Journal of Experimental Biology. DOI:10. 1242/jeb. 194548 Machado S A, Pasquarelli-do-Nascimento G, da Silva D S, Farias G R, de Oliveira Santos I, Baptista L B, Magalhães K G. 2022. Browning of the white adipose tissue regulation:new insights into nutritional and metabolic relevance in health and diseases. Nutrition & Metabolism. DOI:10. 1186/s12986-022-00694-0 Matthias A, Ohlson K B E, Fredriksson J M, Jacobsson A, Nedergaard J, Cannon B. 2000. Thermogenic responses in brown fat cells are fully UCP1-dependent:UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty acid-induced thermogenesis. Journal of Biological Chemistry, 275 (33):25073-25081. McFarlane S V, Mathers K E, Staples J F. 2017. Reversible temperature-dependent differences in brown adipose tissue respiration during torpor in a mammalian hibernator. American Journal of Physiology-Regulatory Integrative Comparative Physiology, 312 (3):R434-R442. McKee G, Andrews J F. 1990. Brown adipose tissue lipid is the main source of energy during arousal of the golden hamster (Mesocricetus auratus). Comparative Biochemistrye and Physiology, 96 (4):485-488. Mohr S M, Bagriantsev S N, Gracheva E O. 2020. Cellular, molecular, and physiological adaptations of hibernation:the solution to environmental challenges. Annual Review of Cell and Developmental Biology, 36:315-338. Morrison S F, Madden C J, Tupone D. 2014. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metabolism, 19 (5):741-756. Morrison S F, Nakamura K. 2019. Central mechanisms for thermoregulation. Annual Review of Physiology, 81:285-308. Mu W J, Zhu J Y, Chen M, Guo L. 2021. Exercise-mediated browning of white adipose tissue:its significance, mechanism and effectiveness. International Journal of Molecular Sciences, 22 (21):11512. Nakamura K, Matsumura K, Hübschle T, Nakamura Y, Hioki H, Fujiyama F, Boldogköi Z, König M, Thiel H J, Gerstberger R, Kobayashi S, Kaneko T. 2004. Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. The Journal of Neuroscience, 24:5370-5380. Nakamura K, Morrison S F. 2007. Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 292 (1):R127-R136. Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B. 2001. UCP1:the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1504 (1):82-106. Oelkrug R, Heldmaier G, Meyer C. 2011. Torpor patterns, arousal rates, and temporal organization of torpor entry in wildtype and UCP1-ablated mice. Journal of Comparative Physiology BBiochemical Systemic and Environmental Physiology, 181 (1):137-145. Ortmann S, Heldmaier G. 2000. Regulation of body temperature and energy requirements of hibernating Alpine marmots (Marmota marmota). American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 278 (3):R698-R704. Peier A M, Moqrich A, Hergarden A C, Reeve A J, Andersson D A, Story G M, Earley T J, Dragoni I, McIntyre P, Bevan S, Patapoutian A. 2002. A TRP channel that senses cold stimuli and menthol. Cell, 108 (5):705-715. Puigserver P, Wu Z, Park C W, Graves R, Wright M, Spiegelman B M. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 92 (6):829-839. Rasmussen A T. 1923. The so-called hibernating gland. Journal of Morphology, 38:147-205. Reeder D M, Frank C L, Turner G G, Meteyer C U, Kurta A, Britzke E R, Vodzak M E, Darling S R, Stihler C W, Hicks A C, Jacob R, Grieneisen L E, Brownlee S A, Muller L K, Blehert D S. 2012. Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS ONE, 7(6):e38920. Ruf T, Geiser F. 2015. Daily torpor and hibernation in birds and mammals. Biological Reviews, 90 (3):891-926. Ryu V, Garretson J T, Liu Y, Vaughan C H, Bartness T J. 2015. Brown adipose tissue has sympathetic-sensory feedback circuits. The Journal of Neuroscience:The Official Journal of the Society for Neuroscience, 35 (5):2181-2190. Sakers A, De Siqueira M K, Seale P, Villanueva C J. 2021. Adiposetissue plasticity in health and disease. Cell, 185 (3):419-446. Samuelson I, Vidal-Puig A. 2020. Studying brown adipose tissue in a human in vitro context. Frontiers in Endocrinology, 11:629. Sas K, Robotka H, Toldi J, Vécsei L. 2007. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. Journal of the Neurological Sciences, 257 (1):221-239. Schwartz C, Ballinger M A, Andrews M T. 2015. Melatonin receptor signaling contributes to neuroprotection upon arousal from torpor in thirteen-lined ground squirrels. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 309 (10):R1292-R1300. Shi Z, Qin M, Huang L, Xu T, Chen Y, Hu Q, Peng S, Peng Z, Qu L N, Chen S G, Tuo Q H, Liao D F, Wang X P, Wu R R, Yuan T F, Li Y H, Liu X M. 2021. Human torpor:translating insights from nature into manned deep space expedition. Biological Reviews of the Cambridge Philosophical Society, 96 (2):642-672. Shinde A B, Song A, Wang Q A. 2021. Brown adipose tissue heterogeneity, energy metabolism, and beyond. Frontiers Endocrinology(Lausanne). DOI:10. 3389/fedo. 2021. 651763 Smith J R, Jamie J F, Guillemin G J. 2016. Kynurenine-3-monooxygenase:a review of structure, mechanism, and inhibitors. Drug Discovery Today, 21 (2):315-324. Smith R E, Hock R J. 1963. Brown fat:thermogenic effector of arousal in hibernators. Science (New York, NY), 140 (3563):199-200. Staples J F. 2014. Metabolic suppression in mammalian hibernation:the role of mitochondria. Journal of Experimental Biology, 217(Pt 12):2032-2036. Szczepanska E, Gietka-Czernel M. 2022. FGF21:A novel regulator of glucose and lipid metabolism and whole-body energy balance. Hormone and Metabolic Research, 54 (4):203-211. Tan C H, McNaughton P A. 2016. The TRPM2 ion channel is required for sensitivity to warmth. Nature, 536 (7617):460-463. Tidemann C R. 1982. Sex differences in seasonal changes of brown adipose tissue and activity of the Australian vespertilionid bat Eptesicus vulturnus. Australian Journal of Zoology, 30 (1):15-22. Tøien Ø, Drew K L, Chao M L, Rice M E. 2001. Ascorbate dynamics and oxygen consumption during arousal from hibernation in Arctic ground squirrels. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 281 (2):R572-R583. Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman B M. 2006. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metabolism, 3(5):333-341. Vercellino I, Sazanov L A. 2022. The assembly, regulation and function of the mitochondrial respiratory chain. Nature Reviews Molecular Cell Biology, 23 (2):141-161. Villarroya F, Cereijo R, Villarroya J, Giralt M. 2017. Brown adipose tissue as a secretory organ. Nature Reviews Endocrinology, 13(1):26-35. Virtanen K A, Lidell M E, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto N J, Enerbäck S. 2009. Functional brown adipose tissue in healthy adults. New England Journal of Medicine, 360 (15):1518-1525. Wang Z, Wang Q A, Liu Y, Jiang L. 2021. Energy metabolism in brown adipose tissue. FEBS Journal, 288 (12):3647-3662. Wetsel W. 2011. Sensing hot and cold with TRP channels. International Journal of Hyperthermia:The Official Journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group, 27 (4):388-398. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla R C, Spiegelman B M. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 98 (1):115-124. Xing X, Yang M, Wang D H. 2015. The expression of leptin, hypothalamic neuropeptides and UCP1 before, during and after fattening in the Daurian ground squirrel (Spermophilus dauricus). Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology, 184:105-112. Xue K L, Wu D M, Wang Y S, Zhao Y H, Shen H Y, Yao J F, Huang X, Li X M, Zhou Z, Wang Z H, Qiu Y F. 2022. The mitochondrial calcium uniporter engages UCP1 to form a thermoporter that promotes thermogenesis. Cell Metabolism, 34 (9):1325-1341. Yan J, Burman A, Nichols C, Alila L, Showe L C, Showe M K, Boyer B B, Barnes B M, Marr T G. 2006. Detection of differential gene expression in brown adipose tissue of hibernating arctic ground squirrels with mouse microarrays. Physiological Genomics, 25(2):346-353. Yuan X X, Dong M, Lee H J, Jin W Z. 2016. Brown adipose tissue and its therapeutic application. Science Bulletin, 61 (19):1498-1503. Zeng W, Yang F, Shen W L, Zhan C, Zheng P, Hu J. 2022. Interactions between central nervous system and peripheral metabolic organs. Science China Life Sciences, 65 (10):1929-1958. Zeng X, Ye M, Resch J M, Jedrychowski M P, Hu B, Lowell B B, Ginty D D, Spiegelman B M. 2019. Innervation of thermogenic adipose tissue via a calsyntenin 3β -S100b axis. Nature, 569(7755):229-235. Zhang Z Y, Yang D, Xiang J W, Zhou J W, Cao H, Che Q S, Bai Y, Guo J, Su Z Q. 2021. Non-shivering thermogenesis signalling regulation and potential therapeutic applications of brown adipose tissue. International Journal of Biological Sciences, 17 (11):2853-2870. 王德华, 赵志军, 张学英, 张志强, 徐德立, 邢昕, 杨生妹, 王政昆, 高云芳, 杨明. 2022. 中国哺乳动物生理生态学研究进展与展望. 兽类学报, 41 (5):537-555. 王德华, 王祖望. 1989. 小哺乳动物在高寒环境中的生存对策Ⅰ. 高原鼠兔和根田鼠褐色脂肪组织 (BAT) 重量和显微结构的季节性变化. 兽类学报, 9 (3):176-185. 王德华, 王祖望. 1992. 褐色脂肪组织及其产热研究进展. 生态学杂志, 11 (3):43-48. 叶祖承, 蔡益鹏. 1994. 棕色脂肪的产热及其调控机制. 生物化学与生物物理进展, 21 (2):135-139, 187. 任月. 2018. 达乌尔黄鼠 (Spermophilus dauricus) 年周期体重、体脂变化及脂联素的调节作用. 沈阳:沈阳师范大学硕士学位论文. 孙金生, 曾缙祥. 1994. 刺猬冬眠过程中褐色脂肪和非颤抖性产热研究. 兽类学报, 14 (2):147-153. 宋晓崴, 曾缙祥. 1991. 黄鼠 (Citellus dauricus) 基础代谢率、静止代谢率、化学热调节强度的季节性变化研究. 兽类学报, 11(1):48-55. 杨明, 邢昕, 管淑君, 赵岩, 王子英, 王德华. 2011. 达乌尔黄鼠冬眠期间体温的变化和冬眠模式. 兽类学报, 31 (4):387-395. |
[1] | 张修静, 王恒, 钟秋梅, 杨晨希, 王建礼. 冬眠和非冬眠状态达乌尔黄鼠肾单位及相关功能因子的比较[J]. 兽类学报, 2022, 42(6): 677-686. |
[2] | 王德华, 王祖望. 青藏高原小型哺乳动物的生理生态学研究:从个体到生态系统[J]. 兽类学报, 2022, 42(5): 482-489. |
[3] | 毛敏, 杨明, 刘新宇. 冬眠对达乌尔黄鼠盲肠菌群的影响[J]. 兽类学报, 2022, 42(4): 420-431. |
[4] | 王恒, 王建礼, 杨晨希, 何娅婷. 达乌尔黄鼠犁鼻器和副嗅球的组织结构及嗅球c-Fos表达的季节变化[J]. 兽类学报, 2021, 41(6): 685-694. |
[5] | 王德华, 赵志军, 张学英, 张志强, 徐德立, 邢昕, 杨生妹, 王政昆, 高云芳, 杨明. 中国哺乳动物生理生态学研究进展与展望[J]. 兽类学报, 2021, 41(5): 537-555. |
[6] | 张永俊, 和育超, 赵娟钧, 陈尧, 李延鹏, 黄志旁, 崔亮伟, 肖文. 云岭自然保护区拉沙山区域亚洲黑熊的活动模式[J]. 兽类学报, 2021, 41(2): 136-143. |
[7] | 邢昕, 汤刚彬, 孙明月, 杨明, 王德华. 瘦素在育肥后达乌尔黄鼠能量平衡及体温调节中的作用[J]. 兽类学报, 2015, 35(4): 379-388. |
[8] | 门丽媛, 宋士一, 刘新宇, 彭霞, 吕铮, 刘帅, 蔡鲁纳, 杨明. 达乌尔黄鼠育肥过程和冬眠期白色脂肪组织糖代谢相关基因的差异表达[J]. 兽类学报, 2015, 35(4): 422-430. |
[9] | 吕铮, 蔡鲁纳, 宋士一, 刘新宇, 彭霞, 杨明. 光照黑暗循环条件下达乌尔黄鼠的冬眠模式和能量消耗[J]. 兽类学报, 2015, 35(4): 398-404. |
[10] | 吕铮 宋士一 杨明 彭霞. 达乌尔黄鼠入眠准备期的体温、代谢率及能量特征[J]. 兽类学报, 2014, 34(4): 348-. |
[11] | 孙小勇 高云芳 王琦 姜山峰 郭树攀 刘坤. 达乌尔黄鼠实验室饲养、繁殖及其冬眠阵[J]. , 2012, 32(4): 356-361. |
[12] | 向左甫, 肖文, 霍晟. 西藏红拉雪山滇金丝猴的夜宿地与夜宿树选择[J]. 兽类学报, 2011, 31(4): 330-337. |
[13] | 杨明, 邢昕, 管淑君, 赵岩, 王子英, 王德华. 达乌尔黄鼠冬眠期间体温的变化和冬眠模式[J]. , 2011, 31(4): 387-395. |
[14] | 龙娣,郭炳冉,高玲,江乐,高燕,卢少俊. 刺猬嗅球冬眠期与非冬眠期c-Fos 表达的差异[J]. , 2011, 31(3): 272-277. |
[15] | 杨明,王德华. 哺乳动物的蛰眠: 类型、物种分布与模式[J]. , 2011, 31(2): 195-204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||