兽类学报 ›› 2022, Vol. 42 ›› Issue (4): 398-409.DOI: 10.16829/j.slxb.150629

• 研究论文 • 上一篇    下一篇

黑龙江省张广才岭北部小飞鼠的遗传多样性与种群历史动态

田新民(), 廉明栋, 宋雅祺, 刘小慧, 杨孟平, 陈红   

  1. 牡丹江师范学院生命科学与技术学院,牡丹江 157011
  • 收稿日期:2021-10-30 接受日期:2022-02-23 出版日期:2022-07-30 发布日期:2022-07-22
  • 通讯作者: 田新民
  • 作者简介:田新民 (1982- ),男,博士,副教授,主要从事动物分子生态学研究.
  • 基金资助:
    黑龙江省教育厅项目 (小飞鼠种群地理分化及驱动因素研究);牡丹江师范学院科研项目(GP2021005);黑龙江省自然科学基金(LH2020C071)

Genetic diversity and demographic history of Siberian flying squirrel (Pteromys volans) population in northern Zhangguangcai Mountains, Heilongjiang, China

Xinmin TIAN(), Mingdong LIAN, Yaqi SONG, Xiaohui LIU, Mengping YANG, Hong CHEN   

  1. College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China
  • Received:2021-10-30 Accepted:2022-02-23 Online:2022-07-30 Published:2022-07-22
  • Contact: Xinmin TIAN

摘要:

小飞鼠 (Pteromys volans) 为树栖夜行滑行类啮齿动物,在森林种子传播和维持生态系统平衡等方面发挥着重要的生态学作用。本研究利用mtDNA Cytb、控制区和nDNA微卫星3种分子标记,对黑龙江省张广才岭北部的小飞鼠种群进行遗传多样性与历史动态分析。检测出Cytb全序列 (1 140 bp) 的平均单倍型多样性为0.909,平均核苷酸多样性为0.616%;控制区全序列 (1 066 bp) 的平均单倍型多样性为0.945,平均核苷酸多样性为1.698%;微卫星检测出种群平均等位基因数13.167个,观测杂合度0.727,期望杂合度0.864,近交系数0.159。结果表明,小飞鼠种群遗传多样性丰富,但存在一定程度的杂合度不足和近亲繁殖;未检测到种群近期遗传瓶颈效应,种群内无遗传分化。高比例的稀有单倍型 (≥ 60%) 、低频率等位基因与近亲繁殖,提示未来种群面临遗传多样性下降的风险,建议加大对该物种的关注和保护力度。基于Cyt b基因的系统进化关系结果表明,小飞鼠存在3个明显的遗传谱系:远东、欧亚大陆北部和日本北海道,本研究中张广才岭和大兴安岭的样本单倍型归属为远东谱系。

关键词: 小飞鼠, mtDNA, 微卫星, 遗传多样性, 种群历史动态

Abstract:

The Siberian flying squirrel (Pteromys volans) is an arboreal, nocturnal, and gliding rodent. It plays an important role in forest seed dispersal and ecosystem balance maintenance. We used three molecular markers, namely mtDNA Cytb, control region, and nDNA microsatellites, to conduct genetic diversity and demographic history analyses of the flying squirrel population in the north Zhangguangcai Mountains, Heilongjiang Province. The mean haplotype diversity based on the complete sequence of Cyt b gene (1 140 bp) was 0.909 and the mean nucleotide diversity was 0.616%. The mean haplotype diversity based on the complete sequence of the control region (1 066 bp) was 0.945 and the mean haplotype diversity was 1.698%. The mean number of alleles in the population detected by 12 microsatellite loci was 13.167, the observed heterozygosity was 0.727, the expected heterozygosity was 0.864 and the inbreeding coefficient was 0.159. Our results indicated a high level of genetic diversity in the flying squirrel population, but low heterozygosity and some level of inbreeding. No evidence of population genetic bottleneck or within-population genetic differentiation was found. However, high proportion of rare haplotypes (≥ 60%), low frequency of alleles, and inbreeding indicate a risk of declining genetic diversity in the Siberian flying squirrel population in the future. It is suggested that conservation efforts forSiberian flying squirrels in this region should be improved. The phylogenetic relationship of Cyt b haplotypes confirmed that there are three major lineages of Siberian flying squirrel occupying the Far Eastern, northern Eurasia, and the island of Hokkaido. The haplotypes of Zhangguangcai and Daxing’an Mountains in this study are part of the lineage Far Eastern.

Key words: Pteromys volans, mtDNA, Microsatellites, Genetic diversity, Population demographic history

中图分类号: