|
Bolanos J P, Medina J M. 1996. Induction of nitric oxide synthase inhibits gap junction permeability in cultured rat astrocytes. Journal of Neurochemistry, 66 (5): 2091-2099.
|
|
Bruzzone R, Haefliger J, Gimlich R, Paul D L. 1993. Connexin40, a component of gap junctions in vascular endothelium, is restricted in its ability to interact with other connexins. Molecular Biology of the Cell, 4 (1): 7-20.
|
|
Chen Q H. 2001. The changes of function and morphology of pulmonary arterial vessels in the pika at high altitude. China Journal Applied Physiology, 17 (2): 178-181. (in Chinese)
|
|
Chen Q S, Feng X, Jiang S C. 2006. Structural study on plateau adaptability of yak lung. Scientia Agricultura Sinica, 39 (10): 2107-2113. (in Chinese)
|
|
Cowburn A S, Crosby A, Macias D, Branco C, Colaço R, Southwood M, Toshner M, Crotty Alexander L E, Morrell N W, Chilvers E R, Johnson R S. 2016. HIF2α-arginase axis is essential for the development of pulmonary hypertension. Proceedings of the National Academy of Sciences of the United States of America, 113 (31): 8801.
|
|
Du J Z, Li Q F. 1982. Effects of simulated hypoxic acclimation on organism, orgin and hematology in Ochotona curzoniae and rats. Acta Theriologica Sinica, 2 (1): 35-42. (in Chinese)
|
|
Feng Z J, Zheng C L. 1985. Studies on the pikas (genus: Ochotona) of China‒Taxonomic notes and distribution. Acta Theriologica Sinica, 5 (4): 269-289. (in Chinese)
|
|
Fu L. 2018. Comparative transcriptome analysis of plateau pika (Ochotona curzoniae) bHPV related genes and initial verification.Master thesis. Beijing: University of Chinese Academy of Sciences. (in Chinese)
|
|
Gabriels J E, Paul D L. 1998. Connexin43 is highly localized to sites of disturbed flow in rat aortic endothelium but connexin37 and connexin40 are more uniformly distributed. Circulation Research, 83 (6): 636-643.
|
|
Ge R L, Kubo K, Kobayashi T, Sekiguchi M, Honda T. 1998. Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. The American Journal of Physiology, 274: 1792-1799.
|
|
Grilli A, De Lutiis M A, Patruno A, Speranza L, Cataldi A, Centurione L, Taccardi A A, Di Napoli P, De Caterina R, Barbacane R, Conti P, Felaco M. 2003. Effect of chronic hypoxia on inducible nitric oxide synthase expression in rat myocardial tissue. Experimental Biology and Medicine, 228 (8): 935-942.
|
|
Hervé J C, Derangeon M. 2013. Gap-junction-mediated cell-to-cell communication. Cell & Tissue Research, 352 (1): 21-31.
|
|
Kumar N M, Gilula N B. 1996. The gap junction communication channel. Cell, 84 (3): 381-388.
|
|
Leybaert L, Lampe P D, Dhein S, Kwak B R, Ferdinandy P, Beyer E C, Laird D W, Naus C C, Green C R, Schulz R. 2017. Connexins in cardiovascular and neurovascular health and disease: Pharmacological implications. Pharmacological Reviews, 69 (4): 396-478.
|
|
Li H G, Ren Y M, Guo S C, Cheng L, Wang D P, Yang J, Chang Z J, Zhao X Q. 2009. The protein level of hypoxia‐inducible factor‐1α is increased in the plateau pika (Ochotona curzoniae) inhabiting high altitudes. Journal of Experimental Zoology Part A Ecological Genetics & Physiology, 311 (2): 134-141.
|
|
Li S, Zou X Y, Fu L, Liu Z H, Bai X H, Du Y R, Guo S C. 2020. Comparative on pulmonary histochemical characteristics between plateau pika and Kunming mouse. Acta Theriologica Sinica, 40 (2): 162-169. (in Chinese)
|
|
Lu C, Mcmahon D G. 1997. Modulation of hybrid bass retinal gap junctional channel gating by nitric oxide. The Journal of Physiology, 499: 689-699.
|
|
Ma L, Ge R L. 2007. Molecular mechanism of adaptation to hypoxia in pika. Progress in Physiological Sciences, 38 (2): 143-146. (in Chinese)
|
|
Pan L J, Li X Z, Zhuo H Y, Li L, Wei L L, Yu X S, Si J Q, Ma K T. 2015. Difference expression of Cx37 and Cx40 of arteries in spontaneously hypertensive rats. Chongqing Medicine, 44 (1): 4-6. (in Chinese)
|
|
Rudyk O, Rowan A, Prysyazhna O, Krasemann S, Hartmann K, Zhang M, Shah A M, Ruppert C, Weiss A, Schermuly R T, Ida T, Akaike T, Zhao L, Eaton P. 2019. Oxidation of PKGIα mediates an endogenous adaptation to pulmonary hypertension. Proceedings of the National Academy of Sciences of the United States of America, 116 (26): 13016-13025.
|
|
Semenza G L. 2005. New insights into nNOS regulation of vascular homeostasis. The Journal of Clinical Investigation, 115: 2976-2978.
|
|
Severs N J, Rothery S, Dupont E, Coppen S R, Yeh H I, Ko Y S, Matsushita T, Kaba R, Halliday D. 2001. Immunocytochemical analysis of connexin expression in the healthy and diseased cardiovascular system. Microscopy Research and Technique, 52 (3): 301-322.
|
|
Sheafor B A. 2003. Metabolic enzyme activities across an altitudinal gradient: an examination of pikas (genus Ochotona). The Journal of Experimental Biologyl, 206: 1241-1249.
|
|
Si R, Zhang Q, Cabrera J, Zheng Q, Tsuji‑Hosokawa A, Watanabe M, Hosokawa S, Xiong M, Jain P P, Ashton A W, Yuan J X, Wang J, Makino A. 2020. Chronic hypoxia decreases endothelial connexin40, attenuates endothelium-dependent hyperpolarization-mediated relaxation in small distal pulmonary arteries, and leads to pulmonary hypertension. Journal of the American Heart Association, 9 (24): e018327.
|
|
Simon A M, McWhorter A R, Chen H, Jackson C L, Ouellette Y. 2004. Decreased intercellular communication and connexin expression in mouse aortic endothelium during lipopolysaccharide-induced inflammation. Journal of Vascular Research, 41 (4): 323-333.
|
|
Totland M Z, Rasmussen N L, Knudsen L M, Leithe E. 2020. Regulation of gap junction intercellular communication by connexin ubiquitination: physiological and pathophysiological implications. Cellular and Molecular Life Sciences, 77 (4): 573-591.
|
|
Voelkel N F, Mizuno S, Bogaard H J. 2013. The role of hypoxia in pulmonary vascular diseases: a perspective. The Journal of Clinical Investigation, 304: 457-465.
|
|
Wang L, Yin J, Nickles H T, Ranke H, Tabuchi A, Hoffmann J, Tabeling C, Barbosa‑Sicard E, Chanson M, Kwak B R, Shin H S, Wu S, Isakson B E, Witzenrath M, de Wit C, Fleming I, Kuppe H, Kuebler W M. 2012. Hypoxic pulmonary vasoconstriction requires connexin 40‒mediated endothelial signal conduction. The Journal of Clinical Investigation, 122 (11): 4218-4230.
|
|
Wang R, Pan J J, Wang D Y, Ji Y K, Li M C, Jin H F, Yuan Y H. 2021. ‘Blue lips’: research progress in pulmonary vascular remodeling in hypoxic pulmonary hypertension. Scientia Sinica Vitae, 51: 1637-1645. (in Chinese)
|
|
Wang T, Zhang Z X, Liu S Y, Wu T Y, Sun B Y, Wang D X. 2004. Role of prostaglandins nitric oxide and potassium channel in the blunting of hypoxic pulmonary vasoconstriction in the high altitude adaptive animal. Chinese Journal of Pathophysiology, 20 (5): 711-714. (in Chinese)
|
|
Wang X J, Wei D B, Wei L, Zhang J M, Yu H Y. 2008. Physiological character of erythrocyte adapting to hypoxia in plateau zokor and platean pika. Sichuan Journal of Zoology, 27 (6): 1100-1103. (in Chinese)
|
|
Wang X Q, Wang Z G, Chen Q H, Wang Z G, Wen J L. 2001. Changes on pulmonary arterial pressure and level of NO in pika. Journal of High Altitude Medicine, 11 (1): 2-6. (in Chinese)
|
|
Weigert A. 1996. Endothelium-dependent vascular hyporesponsiveness without nitric oxide synthase induction in aorta of cirrhotic rats. Hepatology, 22 (6): 1856-1862.
|
|
Wit C D, Roos F, Bolz S S, Kirchhoff S, Krüger O, Willecke K, Pohl U. 2000. Impaired conduction of vasodilation along arterioles in connexin40-deficient mice. Circulation Research, 86 (6): 649-655.
|
|
Wölfle S E, Schmidt V J, Hoepfl B, Gebert A, Alcoléa S, Gros D, Wit C D. 2007. Connexin45 cannot replace the function of connexin40 in conducting endothelium-dependent dilations along arterioles. Circulation Research, 101 (12): 1292.
|
|
Wu Y, Du J Z. 2001. Study of activity of HPA in rat and Ochotona curzoniae under hypoxia. Acta Theriologica Sinica, 21 (3): 195-198. (in Chinese)
|
|
Xie L, Zhang X Z, Qi D L, Guo X Y, Pang B, Dou Y R, Zou X Y, Guo S C, Zhao X Q. 2014. Inhibition of inducible nitric oxide synthase expression and nitric oxide production in plateau pika (Ochotona curzoniae) at high altitude on Qinghai-Tibet Plateau. Nitric Oxide: Biology and Chemistry, 38: 38-44.
|
|
Zhang J J, Chen J H, Zhao M P, Wu H L, Zhang C C, Ying L, Chen X W, Wang W Y. 2018. The role of endoplasmic reticulum stress in pulmonary hypertension in rat induced by chronic hypoxia and hypercapnia. Chinese Journal of Applied Physiology, 34 (4): 327-333, 387. (in Chinese)
|
|
Zhang X Z, Fu L, Zou X Y, Li S, Ma X D, Xie L, Pang B, Ma J B, Wang Y J, Dou Y R, Guo S C. 2022. Lung transcriptome analysis for the identification of genes involved in the hypoxic adaptation of plateau pika (Ochotona curzoniae). Comparative Biochemistry and Physiology‒Part D: Genomics and Proteomics, 41: 100943.
|
|
Zhao T B, Ning H X, Zhu S S, Sun P, Xu S X, Chang Z J, Zhao X Q. 2004. Cloning of hypoxia-inducible factor 1α cDNA from a high hypoxia tolerant mammal-plateau pika (Ochotona curzoniae). Biochemical and Biophysical Research Communications, 316: 565-572.
|
|
Zhuo H Y, Pan L J, Li X Z, Li L, Wei L L, Yu X S, Si J Q, Ma K T. 2014. Difference expression of Cx43 and Cx45 in aorta of spontaneously hypertensive rats and normotensive rats. China Journal of Modern Medicine, 24 (25): 1-4. (in Chinese)
|
|
马兰, 格日力. 2007. 高原鼠兔低氧适应分子机制的研究进展. 生理科学进展, 38 (2): 143-146.
|
|
王晓君, 魏登邦, 魏莲, 张建梅, 于红妍. 2008. 高原鼢鼠和高原鼠兔红细胞低氧适应特征. 四川动物, 27 (6): 1100-1103.
|
|
王晓勤, 王占刚, 陈秋红, 王志刚, 温佳林. 2001. 高原鼠兔肺动脉压与NO的变化. 高原医学杂志, 11 (1): 2-6.
|
|
王睿, 潘进进, 王定友, 姬雨轲, 刘明成, 金海峰, 袁予辉. 2021. “蓝嘴唇”: 缺氧性肺动脉高压肺血管重构研究进展. 中国科学: 生命科学, 51 (12): 1637-1645.
|
|
付林. 2018. 高原鼠兔bHPV相关基因的比较转录组分析与初步验证. 北京: 中国科学院大学硕士学位论文.
|
|
冯祚建, 郑昌琳. 1985. 中国鼠兔属 (Ochotona) 的研究: 分类与分布. 兽类学报, 5 (4): 269-289.
|
|
杜继曾, 李庆芬. 1982. 模拟高原低氧对高原鼠兔和大鼠器官与血液若干指标的影响. 兽类学报, 2 (1): 35-42.
|
|
李双, 邹小艳, 付林, 刘忠浩, 白祥慧, 都玉蓉, 郭松长. 2020. 高原鼠兔和昆明白小鼠肺组织结构比较. 兽类学报, 40 (2): 162-169.
|
|
陈秋红. 2001. 高原鼠兔肺动脉血管功能及形态变化.中国应用生理学杂志, 17 (2): 178-181.
|
|
陈秋生, 冯霞, 姜生成. 2006. 牦牛肺脏高原适应性的结构研究.中国农业科学, 39 (10): 2107-2113.
|
|
吴雁, 杜继曾. 2001. 低氧暴露条件下高原鼠兔和大鼠HPA轴活动的比较. 兽类学报, 21 (3): 195-198.
|
|
汪涛, 张珍祥, 刘声远, 吴天一, 孙秉庸, 王迪浔. 2004. 前列腺素、一氧化氮和钾通道在鼠兔缺氧肺血管反应钝化中的作用. 中国病理生理杂志, 20 (5): 711-714.
|
|
张晶晶, Chen J H, 赵美平, 武垣伶, 张聪聪, 应磊, 陈锡文, 王万铁. 2018. 内质网应激在大鼠低氧高二氧化碳性肺动脉高压中的作用. 中国应用生理学杂志, 34 (4): 327-333, 387.
|
|
卓泓宇, 潘立君, 李新芝, 李丽, 魏丽丽, 于秀石, 司军强, 马克涛. 2014. Cx43和Cx45在自发性高血压和正常血压大鼠主动脉的表达差异. 中国现代医学杂志, 24 (25): 1-4.
|
|
潘立君, 李新芝, 卓泓宇, 李丽, 魏丽丽, 于秀石, 司军强, 马克涛. 2015. Cx37和Cx40在自发性高血压大鼠不同动脉间的表达差异. 重庆医学, 44 (1): 4-6.
|