兽类学报 ›› 2022, Vol. 42 ›› Issue (5): 540-552.DOI: 10.16829/j.slxb.150702
朱红娟1,2,3(), 李婧1,2,3, 王苏芹1,2,3, 唐琦4, 蓝贤勇4, 曲家鹏1,2,5()
收稿日期:
2022-06-10
接受日期:
2022-08-22
出版日期:
2022-09-30
发布日期:
2022-09-21
通讯作者:
曲家鹏
作者简介:
朱红娟 (1996- ),女,硕士研究生,主要从事动物生态学研究. E-mail: zhuhongjuan@nwipb.cas.cn
基金资助:
Hongjuan ZHU1,2,3(), Jing LI1,2,3, Suqin WANG1,2,3, Qi TANG4, Xianyong LAN4, Jiapeng QU1,2,5()
Received:
2022-06-10
Accepted:
2022-08-22
Online:
2022-09-30
Published:
2022-09-21
Contact:
Jiapeng QU
摘要:
个性特征是指动物个体间稳定、可遗传的行为差异,与相关基因多态性有关,反映了动物对环境的适应模式,探究个性相关基因变异,将有助于更好地理解动物对环境的适应与进化机制。本文以高原鼠兔 (Ochotona curzoniae) 为对象,研究了5个不同海拔地区高原鼠兔的个性 (探究性、勇敢性和温顺性) 差异特征,并检测了个性相关基因5-羟色胺转运体 (SERT) 的单核苷酸多态性 (SNP) 和mRNA表达。结果发现,高海拔地区高原鼠兔的探究性和勇敢性显著高于低海拔地区,而高海拔地区高原鼠兔SERT基因mRNA表达量显著低于低海拔地区,提示不同海拔高原鼠兔个性特征差异可能与SERT基因mRNA表达有所关联。进一步检测不同海拔地区高原鼠兔SERT基因多态性及其分布差异情况,发现该基因存在6个SNP (其中5个位于外显子3,1个位于外显子5 );不同海拔地区鼠兔基因分布差异分析显示外显子5的c.A1063C 同义突变与海拔之间存在显著相关,高海拔地区该位点CC基因型分布频率显著高于低海拔地区;c.A1063C的基因型虽然与探究性、勇敢性无显著相关,但与温顺性显著相关。综上所述,随着海拔升高,高原鼠兔探究性和勇敢性增加,这有利于动物获取更多的食物资源,进而增加其生存机会。与此同时,SERT基因多态性显示与不同海拔地区的生存环境相适应的特征,且与温顺性有关,暗示不同海拔高原鼠兔个性差异可能与SERT基因SNP的差异有关。本研究从基因表达与突变的角度尝试阐述高原鼠兔适应不同海拔环境的行为差异,显示了不同海拔地区高原鼠兔行为生存策略潜在的分子机制。
中图分类号:
朱红娟, 李婧, 王苏芹, 唐琦, 蓝贤勇, 曲家鹏. 不同海拔高原鼠兔个性特征与SERT基因多态性关联[J]. 兽类学报, 2022, 42(5): 540-552.
Hongjuan ZHU, Jing LI, Suqin WANG, Qi TANG, Xianyong LAN, Jiapeng QU. Association between personality and SERT gene polymorphisms in plateau pikas (Ochotona curzoniae) at different altitudes[J]. ACTA THERIOLOGICA SINICA, 2022, 42(5): 540-552.
序列名称Primer names | 序列 (5′‒3′) Sequences (5′‒3′) | 温度 Tm (oC) | 长度 Length (bp) | 功能 Function |
---|---|---|---|---|
P1 | F1: AAGTTTATTCGCCGGCACG | Touch-down | 249 | Exon 1 amplification |
R1: GTACAAAGTAAGCGTGGGCT | ||||
P2 | F2: CCACCAACTCACACACACCT | Touch-down | 332 | Exon 2 amplification |
R2: CCCACGAACTGCAAACACAG | ||||
P3 | F3: ACCCAACTCAAGGGACATGC | Touch-down | 665 | Exon 3 amplification |
R3: CCGACTGTGGCTCTTGGATT | ||||
P4 | F4: AAGACCAGGAAGCAAGGTGG | Touch-down | 966 | Exon 4 and exon 5 amplification |
R4: AGCCTGCTGGAAGAGAGTTG | ||||
P5 | F5: CCTGTGGTGCAGAGTCCTTT | Touch-down | 1 284 | Exon 6, exon 7 and exon 8 amplification |
R5: TTTAGGCTTTGCTCAGGCCA | ||||
P6 | F6: CACCTCGGAACTGTCTCACC | Touch-down | 1 243 | Exon 9 and exon 10 amplification |
R6: GTCCACTTCCCTCCTCATGC | ||||
P7 | F7: AGGGAGGTGCCCTTACAGAT | Touch-down | 400 | Exon 11 amplification |
R7: GCCTCTGACGACCACAAAGA | ||||
P8 | F8: CCAGGTTTGTGGGCTCCTTT | Touch-down | 987 | Exon 12 and exon 13 amplification |
R8: TCTGGTAAGCGTGTAGGGCT | ||||
P9 | F9: GGAAATATGGCACGTCTTGGG | Touch-down | 491 | Exon 14 amplification |
R9: GGCACCCAAATCCCACTGTA | ||||
P10 | F10: GCTACTACACCAGGCACAGA | Touch-down | 927 | Exon 15 amplification |
R10: GTGAAGTGCAGCAAAGCCAA |
表1 高原鼠兔SERT基因外显子序列的PCR扩增引物
Table 1 PCR amplification primers for exon sequence of plateau pika’s SERT gene
序列名称Primer names | 序列 (5′‒3′) Sequences (5′‒3′) | 温度 Tm (oC) | 长度 Length (bp) | 功能 Function |
---|---|---|---|---|
P1 | F1: AAGTTTATTCGCCGGCACG | Touch-down | 249 | Exon 1 amplification |
R1: GTACAAAGTAAGCGTGGGCT | ||||
P2 | F2: CCACCAACTCACACACACCT | Touch-down | 332 | Exon 2 amplification |
R2: CCCACGAACTGCAAACACAG | ||||
P3 | F3: ACCCAACTCAAGGGACATGC | Touch-down | 665 | Exon 3 amplification |
R3: CCGACTGTGGCTCTTGGATT | ||||
P4 | F4: AAGACCAGGAAGCAAGGTGG | Touch-down | 966 | Exon 4 and exon 5 amplification |
R4: AGCCTGCTGGAAGAGAGTTG | ||||
P5 | F5: CCTGTGGTGCAGAGTCCTTT | Touch-down | 1 284 | Exon 6, exon 7 and exon 8 amplification |
R5: TTTAGGCTTTGCTCAGGCCA | ||||
P6 | F6: CACCTCGGAACTGTCTCACC | Touch-down | 1 243 | Exon 9 and exon 10 amplification |
R6: GTCCACTTCCCTCCTCATGC | ||||
P7 | F7: AGGGAGGTGCCCTTACAGAT | Touch-down | 400 | Exon 11 amplification |
R7: GCCTCTGACGACCACAAAGA | ||||
P8 | F8: CCAGGTTTGTGGGCTCCTTT | Touch-down | 987 | Exon 12 and exon 13 amplification |
R8: TCTGGTAAGCGTGTAGGGCT | ||||
P9 | F9: GGAAATATGGCACGTCTTGGG | Touch-down | 491 | Exon 14 amplification |
R9: GGCACCCAAATCCCACTGTA | ||||
P10 | F10: GCTACTACACCAGGCACAGA | Touch-down | 927 | Exon 15 amplification |
R10: GTGAAGTGCAGCAAAGCCAA |
名称 Names | 序列 (5′‒3′) Sequences (5′‒3′) | 长度 Length (bp) |
---|---|---|
P1-SERT | F: AGACATCCGCTTGAACG | 176 |
R: TGGGCACCATAGTCTTCT | ||
P2-GAPDH | F: AGGGCTGCTTTCAACTCTGG | 137 |
R: CCGTTCTCAGCCTTCACTGT |
表2 高原鼠兔SERT基因qRT-PCR引物序列
Table 2 qRT-PCR primer sequences of plateau pika’s SERT gene
名称 Names | 序列 (5′‒3′) Sequences (5′‒3′) | 长度 Length (bp) |
---|---|---|
P1-SERT | F: AGACATCCGCTTGAACG | 176 |
R: TGGGCACCATAGTCTTCT | ||
P2-GAPDH | F: AGGGCTGCTTTCAACTCTGG | 137 |
R: CCGTTCTCAGCCTTCACTGT |
行为特征 Behavioral characteristics | PC1 | PC2 |
---|---|---|
移动累计距离 Accumulated distance traveled | 0.734 | 0.594 |
移动累计时间 Accumulated movement time | 0.762 | 0.466 |
中心区活动频率 Central zone activity frequency | 0.877 | 0.294 |
中心区活动时间 Central zone activity time | 0.769 | -0.562 |
边缘区活动频率 Frequency of limbic activity | 0.793 | 0.431 |
边缘区活动时间 Time of limbic activity | -0.685 | 0.615 |
中心区活动累计距离 Cumulative distance of activity in central zone | -0.702 | 0.203 |
边缘区活动累计距离 Limbic distance of activity in central zone | 0.777 | -0.507 |
特征值 Characteristic value | 4.67 | 1.84 |
累计解释方差 Cumulative explained variance | 58.42% | 22.94% |
表3 8个高原鼠兔行为变量的主成分分析
Table 3 Principal components analysis of measures of plateau pikas from the 8 behaviours
行为特征 Behavioral characteristics | PC1 | PC2 |
---|---|---|
移动累计距离 Accumulated distance traveled | 0.734 | 0.594 |
移动累计时间 Accumulated movement time | 0.762 | 0.466 |
中心区活动频率 Central zone activity frequency | 0.877 | 0.294 |
中心区活动时间 Central zone activity time | 0.769 | -0.562 |
边缘区活动频率 Frequency of limbic activity | 0.793 | 0.431 |
边缘区活动时间 Time of limbic activity | -0.685 | 0.615 |
中心区活动累计距离 Cumulative distance of activity in central zone | -0.702 | 0.203 |
边缘区活动累计距离 Limbic distance of activity in central zone | 0.777 | -0.507 |
特征值 Characteristic value | 4.67 | 1.84 |
累计解释方差 Cumulative explained variance | 58.42% | 22.94% |
图2 不同海拔地区高原鼠兔个性特征的比较. 柱上不同字母表示组间差异显著 (P < 0.05)
Fig. 2 Comparisons of personality traits of plateau pikas at different altitudes.Different letters above the bars indicate significant differences (P < 0.05)
图3 不同海拔地区高原鼠兔SERT基因的mRNA表达差异. 柱上不同字母表示组间差异显著 (P < 0.05)
Fig. 3 Differences in mRNA expression of SERT gene in plateau pikas at different altitudes. Different letters above the bars indicate significant differences (P < 0.05)
图5 高原鼠兔SERT外显子的多态性. a:第5外显子SNP的PCR产物测序;b:第3外显子SNP的PCR产物测序
Fig. 5 The polymorphism of SERT exons in plateau pikas. a: PCR product sequencing of SNP in exon 5; b: PCR product sequencing of SNP in exon 3
突变 Mutation | 样本量 Sample size | 基因型 Genotype | 基因型频率 Genotype frequency | 等位基因频率 Allele frequency | 纯和度 Ho | 杂合度 He | 多态信息含量 PIC | P值 P value |
---|---|---|---|---|---|---|---|---|
c.A1063C | 94 | AA | 0.200 | 0.295 (A) | 0.584 | 0.416 | 0.329 | 0.010 |
AC | 0.189 | 0.705 (C) | ||||||
CC | 0.611 | |||||||
c.C294T | 50 | CC | 0.740 | 0.830 (C) | 0.717 | 0.282 | 0.242 | 0.082 |
CT | 0.180 | 0.170 (T) | ||||||
TT | 0.080 | |||||||
c.G341A | 50 | AA | 0.120 | 0.280 (A) | 0.600 | 0.403 | 0.322 | 0.312 |
GA | 0.320 | 0.720 (G) | ||||||
GG | 0.560 | |||||||
c.C392T | 50 | CC | 0.740 | 0.850 (C) | 0.745 | 0.255 | 0.223 | 0.067 |
CT | 0.220 | 0.150 (T) | ||||||
TT | 0.040 | |||||||
c.C422T | 50 | CC | 0.860 | 0.920 (C) | 0.853 | 0.147 | 0.136 | 0.308 |
CT | 0.120 | 0.080 (T) | ||||||
TT | 0.020 | |||||||
c.T439C | 50 | CC | 0.380 | 0.550 (C) | 0.505 | 0.495 | 0.373 | 0.962 |
TC | 0.340 | 0.450 (T) | ||||||
TT | 0.280 |
表4 高原鼠兔SERT基因等位基因频率估算
Table 4 Estimation of allelic frequency of plateau pika’s SERT gene
突变 Mutation | 样本量 Sample size | 基因型 Genotype | 基因型频率 Genotype frequency | 等位基因频率 Allele frequency | 纯和度 Ho | 杂合度 He | 多态信息含量 PIC | P值 P value |
---|---|---|---|---|---|---|---|---|
c.A1063C | 94 | AA | 0.200 | 0.295 (A) | 0.584 | 0.416 | 0.329 | 0.010 |
AC | 0.189 | 0.705 (C) | ||||||
CC | 0.611 | |||||||
c.C294T | 50 | CC | 0.740 | 0.830 (C) | 0.717 | 0.282 | 0.242 | 0.082 |
CT | 0.180 | 0.170 (T) | ||||||
TT | 0.080 | |||||||
c.G341A | 50 | AA | 0.120 | 0.280 (A) | 0.600 | 0.403 | 0.322 | 0.312 |
GA | 0.320 | 0.720 (G) | ||||||
GG | 0.560 | |||||||
c.C392T | 50 | CC | 0.740 | 0.850 (C) | 0.745 | 0.255 | 0.223 | 0.067 |
CT | 0.220 | 0.150 (T) | ||||||
TT | 0.040 | |||||||
c.C422T | 50 | CC | 0.860 | 0.920 (C) | 0.853 | 0.147 | 0.136 | 0.308 |
CT | 0.120 | 0.080 (T) | ||||||
TT | 0.020 | |||||||
c.T439C | 50 | CC | 0.380 | 0.550 (C) | 0.505 | 0.495 | 0.373 | 0.962 |
TC | 0.340 | 0.450 (T) | ||||||
TT | 0.280 |
图7 高原鼠兔SERT基因c.A1063C不同基因型与个性特征的相关分析. *表示不同基因型间有显著差异 (P < 0.05). A - D分别表示探究性(移动时间)、探究性 (中心区活动频率)、勇敢性和温顺性
Fig. 7 Correlations between different genotypes of c. A1063C within the SERT gene and personality characteristics in plateau pikas. * represent a significant difference at 0.05 level between different genotypes (P < 0.05). A - D represent exploration (accumulated movement time), exploration (central zone activity frequency), boldness and docility, respectively
Boon A K, Réale D, Boutin S. 2010. The interaction between personality, offspring fitness and food abundance in North American red squirrels. Ecology Letters, 10 (11): 1094-1104. | |
Boyer N, Réale D, Marmet J, Pisanu B, Chapuis J L. 2010. Personality, space use and tick load in an introduced population of Siberian chipmunks Tamias sibiricus . Journal of Animal Ecology, 79 (3): 538-547. | |
Careau V, Montiglio P O, Garant D, Pelletier F, Speakman J R, Humphries M M, Réale D. 2015. Energy expenditure and personality in wild chipmunks. Behavioral Ecology and Sociobiology, 69 (4): 653-661. | |
Charmantier A, Demeyrier V, Lambrechts M, Perret S, Grégoire A. 2017. Urbanization is associated with divergence in pace-of-life in great tits. Frontiers in Ecology and Evolution, 5: 53-66. | |
Class B, Brommer J E. 2015. A strong genetic correlation underlying a behavioural syndrome disappears during development because of genotype-age interactions. Proceedings of the Royal Society B: Biological Sciences, 282 (1809): 20142777. | |
Coyne S P, Lindell S G, Clemente J, Barr C S, Parker K J, Maestripieri D. 2015. Dopamine D4 receptor genotype variation in free-ranging rhesus macaques and its association with juvenile behavior. Behavioural Brain Research, 292: 50-55. | |
Croston R, Branch C L, Kozlovsky D Y, Dukas R, Pravosudov V V. 2015. Heritability and the evolution of cognitive traits. Behavioral Ecology, 26 (6): 1447-1459. | |
Dammhahn M, Mazza V, Schirmer A, Göttsche C, Eccard J A. 2020. Of city and village mice: behavioural adjustments of striped field mice to urban environments. Scientific Reports, 10 (1): 1-12. | |
Deans C, Maggert K A. 2015. What do you mean ‘epigenetic’? Genetics , 199 (4): 887-896. | |
Del Giudice M. 2020. Rethinking the fast-slow continuum of individual differences. Evolution and Human Behavior, 41 (6): 536-549. | |
Des Roches S, Post D M, Turley N E, Bailey J K, Hendry A P, Kinnison M T, Palkovacs E P. 2018. The ecological importance of intraspecific variation. Nature Ecology & Evolution, 2 (1): 57-64. | |
Dochtermann N A, Schwab T, Sih A. 2015. The contribution of additive genetic variation to personality variation: heritability of personality. Proceedings of the Royal Society B: Biological Sciences, 282 (1798): 20142201. | |
Edwards H A, Hajduk G K, Durieux G, Burke T, Dugdale H L. 2015. No association between personality and candidate gene polymorphisms in a wild bird population. PLoS ONE, 10 (10): e0138439. | |
Fidler A E, van Oers K, Drent P J, Kuhn S, Mueller J C, Kempenaers B. 2007. Drd4 gene polymorphisms are associated with personality variation in a passerine bird. Proceedings of the Royal Society B: Biological Sciences, 274 (1619): 1685-1691. | |
Garamszegi L Z, Mueller J C, Markó G, Szász E, Zsebők S, Herczeg G, Török J. 2014. The relationship between DRD4 polymorphisms and phenotypic correlations of behaviors in the collared flycatcher. Ecology and Evolution, 4 (8): 1466-1479. | |
Gartland L A, Firth J A, Laskowski K L, Jeanson R, Ioannou C C. 2022. Sociability as a personality trait in animals: methods, causes and consequences. Biological Reviews, 97 (2): 802-816. | |
Gould T D. 2009. Mood and anxiety related phenotypes in mice: characterization using behavioral tests. Neuromethods, 9 (5): 1-20. | |
Grunst A S, Grunst M L, Staes N, Thys B, Pinxten R, Eens M. 2021. Serotonin transporter (SERT) polymorphisms, personality and problem-solving in urban great tits. Scientific Reports, 11 (1): 1-16. | |
Herborn K A, Heidinger B J, Alexander L, Arnold K E. 2014. Personality predicts behavioral flexibility in a fluctuating, natural environment. Behavioral Ecology, 25 (6): 1374-1379. | |
Holtmann B, Grosser S, Lagisz M, Johnson S L, Santos E S A, Lara C E, Nakagawa S. 2016. Population differentiation and behavioural association of the two ‘personality’ genes DRD4 and SERT in dunnocks (Prunella modularis). Molecular Ecology, 25 (3): 706-722. | |
Jaquiéry J, Broquet T, Aguilar C, Evanno G, Perrin N. 2010. Good genes drive female choice for mating partners in the lek-breeding European treefrog. Evolution: International Journal of Organic Evolution, 64 (1): 108-115. | |
Jia Y T, Sui X Y, Chen Y F, He D K. 2020. Climate change and spatial distribution shaped the life-history traits of schizothoracine fishes on the Tibetan Plateau and its adjacent areas. Global Ecology and Conservation, 22: e01041. | |
Jiang Z W, Ma L, Mi C R, Du W G. 2021. Effects of hypoxia on the thermal physiology of a high-elevation lizard: implications for upslope-shifting species. Biology Letters, 17 (3): 20200873. | |
Kawecki T J, Ebert D. 2004. Conceptual issues in local adaptation. Ecology Letters, 7 (12): 1225-1241. | |
Kluger A N, Siegfried Z, Ebstein R P. 2002. A meta-analysis of the association between DRD4 polymorphism and novelty seeking. Molecular Psychiatry, 7 (7): 712-717. | |
Koju N P, He K, Chalise M K, Ray C, Chen Z Z, Zhang B, Wan T, Chen S D, Jiang X L. 2017. Multilocus approaches reveal underestimated species diversity and inter‑specific gene flow in pikas (Ochotona) from southwestern China. Molecular Phylogenetics and Evolution, 107: 239-245. | |
Korsten P, Mueller J C, Hermannstädter C, Bouwman K M, Dingemanse N J, Drent P J, Kempenaers B. 2010. Association between DRD4 gene polymorphism and personality variation in great tits: a test across four wild populations. Molecular Ecology, 19 (4): 832-843. | |
Lai C H, Smith A T. 2003. Keystone status of plateau pikas (Ochotona curzoniae): Effect of control on biodiversity of native birds. Biodiversity & Conservation, 12 (9): 1901-1912. | |
Lee S, Ding N, Sun Y D, Yuan T L, Li J, Yuan Q C, Liu L Z, Yang J, Wang Q, Kolomeisky A B, Hilton I B, Zuo E W, Gao X. 2020. Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome-and transcriptome-wide off-target effects. Science Advances, 6 (29): eaba1773. | |
Li B, Zhang R Y, Wang X Q, Zhang C F, Duan Z Y. 2019. Microsatellite polymorphism and its correlation analysis with body size traits of tan sheep. Biotechnology Bulletin, 35 (6): 131-137. (in Chinese) | |
Li J, Yang Q, Bai Z, Zhou W, Semenza G L, Ge R L. 2018. Chronic cold exposure results in subcutaneous adipose tissue browning and altered global metabolism in Qinghai-Tibetan Plateau pika (Ochotona curzoniae). Biochemical and Biophysical Research Communications, 500 (2): 117-123. | |
Liu Z, Li Q, Chen D D, Zhai W T, Zhao L, Xu S X, Zhao X Q. 2015. Patterns of plant species diversity along an altitudinal gradient and its effect on above-ground biomass in alpine meadows in Qinghai-Tibet Plateau. Biodiversity Science, 23 (4): 451-462. (in Chinese) | |
Matthews L J, Butler P M. 2011. Novelty‐seeking DRD4 polymorphisms are associated with human migration distance out‑of‑Africa after controlling for neutral population gene structure. American Journal of Physical Anthropology, 145 (3): 382-389. | |
Melke J. 2003. Serotonin transporter gene polymorphisms and mental health. Current Opinion in Psychiatry, 16 (2): 215-220. | |
Moiron M, Laskowski K L, Niemelä P T. 2020. Individual differences in behaviour explain variation in survival: a meta-analysis. Ecology Letters, 23 (2): 399-408. | |
Montiglio P O, Garant D, Pelletier F, Réale D. 2012. Personality differences are related to long-term stress reactivity in a population of wild eastern chipmunks, Tamias striatus . Animal Behaviour, 84(4): 1071-1079. | |
Mueller J C, Korsten P, Hermannstaedter C, Feulner T, Dingemanse N J, Matthysen E, Kempenaers B. 2013. Haplotype structure, adaptive history and associations with exploratory behaviour of the DRD4 gene region in four great tit (Parus major) populations. Molecular Ecology, 22 (10): 2797-2809. | |
Mueller J C, Edelaar P, Carrete M, Serrano D, Potti J, Blas J, Tella J L. 2014. Behaviour-related DRD4 polymorphisms in invasive bird populations. Molecular Ecology, 23 (11): 2876-2885. | |
Müller J C, Partecke J, Hatchwell B J, Gaston K J, Evans K L. 2013. Candidate gene polymorphisms for behavioural adaptations during urbanization in blackbirds. Molecular Ecology, 22 (13): 3629-3637. | |
Murphy D L, Fox M A, Timpano K R, Moya P R, Ren‑Patterson R, Andrews A M, Wendland J R. 2008. How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. Neuropharmacology, 55 (6): 932-960. | |
Narayan E J, Cockrem J F, Hero J M. 2013. Sight of a predator induces a corticosterone stress response and generates fear in an amphibian. PLoS ONE, 8 (8): e73564. | |
Nei M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70 (12): 3321-3323. | |
Petelle M B, McCoy D E, Alejandro V, Martin J G, Blumstein D T. 2013. Development of boldness and docility in yellow‑bellied marmots. Animal Behaviour, 86 (6): 1147-1154. | |
Poblete Y, Gutiérrez V, Cid V, Newsome S D, Sabat P, Vasquez R A. 2018. Intraspecific variation in exploratory behavior and elevational affinity in a widely distributed songbird. Oecologia, 186 (4): 931-938. | |
Polverino G, Santostefano F, Díaz‑Gil C, Mehner T. 2018. Ecological conditions drive pace-of-life syndromes by shaping relationships between life history, physiology and behaviour in two populations of Eastern mosquitofish. Scientific Reports, 8 (1): 1-10. | |
Qu J P, Liu M, Yang M, Zhang Y M, Ji W H. 2012. Reproduction of plateau pika (Ochotona curzoniae) on the Qinghai-Tibetan Plateau. European Journal of Wildlife Research, 58 (1): 269-277. | |
Qu J P, Li W J, Yang M, Ji W H, Zhang Y M. 2013. Life history of the plateau pika (Ochotona curzoniae) in alpine meadows of the Tibetan Plateau. Mammalian Biology, 78 (1): 68-72. | |
Qu J P, Réale D, Fletcher Q E, Zhang Y M. 2019. Among-population divergence in personality is linked to altitude in plateau pikas (Ochotona curzoniae). Frontiers in Zoology, 16 (1): 1-7. | |
Qu J P, Fletcher Q E, Réale D, Li W J, Zhang Y M. 2018. Independence between coping style and stress reactivity in plateau pika. Physiology & Behavior, 197: 1-8. | |
Qu Y H, Chen C H, Chen X M, Hao Y, She H S, Wang M X, Ericson P G P, Lin H Y, Cai T L, Song G, Jia C X, Chen C Y, Zhang H L, Li J, Liang L P, Wu T Y, Zhao J Y, Gao Q, Zhang G J, Zhai W W, Zhang C, Zhang Y E, Lei F M. 2021. The evolution of ancestral and species-specific adaptations in snowfinches at the Qinghai-Tibet Plateau. Proceedings of the National Academy of Sciences, 118 (13): 1-10. | |
Rangassamy M, Dalmas M, Féron C, Gouat P, Rödel H G. 2015. Similarity of personalities speeds up reproduction in pairs of a monogamous rodent. Animal Behaviour, 103: 7-15. | |
Réale D, Garant D, Humphries M M, Bergeron P, Careau V, Montiglio P O. 2010a. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philosophical Transactions of the Royal Society B: Biological Sciences, 365 (1560): 4051-4063. | |
Réale D, Dingemanse N J, Kazem A J, Wright J. 2010b. Evolutionary and ecological approaches to the study of personality. Philosophical Transactions of the Royal Society B: Biological Sciences, 365 (1560): 3937-3946. | |
Réale D, Reader S M, Sol D, McDougall P T, Dingemanse N J. 2007. Integrating animal temperament within ecology and evolution. Biological Reviews, 82 (2): 291-318. | |
Ricklefs R E. 2000. Density dependence, evolutionary optimization, and the diversification of avian life histories. The Condor, 102 (1): 9-22. | |
Riyahi S, Carrillo‑Ortiz J G, Uribe F, Calafell F, Senar J C. 2022. Risk‑taking coping style correlates with SERT SNP290 polymorphisms in free‑living great tits. Journal of Experimental Biology, 225 (9): jeb243342. | |
Riyahi S, Sánchez‑Delgado M, Calafell F, Monk D, Senar J C. 2015. Combined epigenetic and intraspecific variation of the DRD4 and SERT genes influence novelty seeking behavior in great tit Parus major. Epigenetics, 10 (6): 516-525. | |
Savitz J B, Ramesar R S. 2004. Genetic variants implicated in personality: a review of the more promising candidates. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 131 (1): 20-32. | |
Schuett W, Tregenza T, Dall S R. 2010. Sexual selection and animal personality. Biological Reviews, 85 (2): 217-246. | |
Segev U, Burkert L, Feldmeyer B, Foitzik S. 2017. Pace-of-life in a social insect: behavioral syndromes in ants shift along a climatic gradient. Behavioral Ecology, 28 (4): 1149-1159. | |
Sharma K, Hema K, Bhatraju N K, Kukreti R, Das R S, Gupta M D, Pasha M A. 2022. The deleterious impact of a non-synonymous SNP on protein structure and function is apparent in hypertension. Journal of Molecular Modeling, 28 (1): 1-17. | |
Shipley A A, Cruz J, Zuckerberg B. 2020. Personality differences in the selection of dynamic refugia have demographic consequences for a winter-adapted bird. Proceedings of the Royal Society B, 287 (1934): 20200609. | |
Smith A T, Xie Y, Hoffmann R S, Lunde D, MacKinnon J, Wilson D E, Wozencraft W C. 2010. A Guide to the Mammals of China. Princeton University Press. | |
Smith B R, Blumstein D T. 2008. Fitness consequences of personality: a meta-analysis. Behavioral Ecology, 19 (2): 448-455. | |
Speakman J R, Chi Q S, Ołdakowski Ł, Fu H B, Fletcher Q E, Hambly C, Togo J, Liu X Y, Piertney S B, Wang X H, Zhang L Z, Redman P, Wang L, Tang G B, Li Y G, Cui J G, Thomson P J, Wang Z L, Glover P, Robertson O C, Zhang Y M, Wang D H. 2021. Surviving winter on the Qinghai-Tibetan Plateau: pikas suppress energy demands and exploit yak feces to survive winter. Proceedings of the National Academy of Sciences, 118 (30): e2100707118. | |
Stuber E F, Carlson B S, Jesmer B R. 2022. Spatial personalities: a meta-analysis of consistent individual differences in spatial behavior. Behavioral Ecology, 33 (3): 477-486. | |
Tan C T, Yu Y B, Jiang Z P, Zhong L, Zhang Y M, Qu J P. 2020. Differences in exploration and resting metabolic rates of plateau pikas (Ochotona curzoniae) at different altitudes. Acta Theriologica Sinica, 40 (1): 27-36. (in Chinese) | |
Tilgar V, Koosa K. 2019. Hissing females of great tits (Parus major) have lower breeding success than non‑hissing individuals. Ethology, 125 (12): 949-956. | |
Timm K, Koosa K, Tilgar V. 2019. The serotonin transporter gene could play a role in anti‑predator behaviour in a forest passerine. Journal of Ethology, 37 (2): 221-227. | |
Timm K, Van O K, Tilgar V. 2018. SERT gene polymorphisms are associated with risk‑taking behaviour and breeding parameters in wild great tits. Journal of Experimental Biology, 221 (4): jeb171595. | |
Urszán T J, Török J, Hettyey A, Garamszegi L Z, Herczeg G. 2015. Behavioural consistency and life history of Rana dalmatina tadpoles. Oecologia, 178 (1): 129-140. | |
Wang C T, Long R J, Wang Q J, Ding L M, Wang M P. 2007. Effects of altitude on plant-species diversity and productivity in an alpine meadow, Qinghai-Tibetan Plateau. Australian Journal of Botany, 55 (2): 110-117. | |
Wauters L A, Mazzamuto M V, Santicchia F, Martinoli A, Preatoni D G, Lurz P W, Romeo C. 2021. Personality traits, sex and food abundance shape space use in an arboreal mammal. Oecologia, 196 (1): 65-76. | |
Weiss A, Wilson V A, Hopkins W D. 2021. Early social rearing, the V1A arginine vasopressin receptor genotype, and autistic traits in chimpanzees. Autism Research, 14 (9): 1843-1853. | |
Wolf M, Weissing F J. 2012. Animal personalities: consequences for ecology and evolution. Trends in Ecology & Evolution, 27 (8): 452-461. | |
Yu T L, Xu Y, Busam M, Deng Y H. 2018. Maternal investment decreases under stressful environments in 11 plateau brown frog (Rana kukunoris) populations. Ethology Ecology & Evolution, 30 (2): 168-177. | |
Zhang S B, Qin W, Xia X H, Xia L Z, Li S L, Zhang L W, Bei Y B, Wang G Q. 2020. Ammonia oxidizers in river sediments of the Qinghai-Tibet Plateau and their adaptations to high‑elevation conditions. Water Research, 173: 115589. | |
Zhu H J, Zhong L, Li J, Wang S Q, Qu J P. 2022. Differential expression of metabolism-related genes in plateau pika (Ochotona curzoniae) at different altitudes of Qinghai-Tibet Plateau. Frontiers in Genetics, 12: 784811. | |
王建梅. 2006. 青藏高原高原鼠兔和根田鼠能量代谢, 产热能力和体重的季节性调节及其影响因素. 北京: 中国科学院研究生院博士学位论文. | |
刘哲, 李奇, 陈懂懂, 翟文婷, 赵亮, 徐世晓, 赵新全. 2015. 青藏高原高寒草甸物种多样性的海拔梯度分布格局及对地上生物量的影响. 生物多样性, 23 (4): 451-456. | |
李标, 张瑞莹, 王小琪, 张存芳, 段子渊. 2019. 滩羊微卫星标记多态性及与体尺性状关联分析. 生物技术通报, 35 (6): 131-137. | |
谭春桃, 余义博, 姜占萍, 钟亮, 张堰铭, 曲家鹏. 2020. 不同海拔地区高原鼠兔探究性和静止代谢率的差异. 兽类学报, 40 (1): 27-36. |
[1] | 张佳钰, 安志芳, 王志洁, 陈晓琦, 魏登邦. 高海拔环境抑制高原鼢鼠和高原鼠兔的胆汁酸代谢[J]. 兽类学报, 2023, 43(5): 553-567. |
[2] | 张璐, 吴学琴, 陈慧青, 董昕, 尚国珍, 吴雁, 边疆晖. 食物蛋白质含量对高原鼠兔免疫功能的影响[J]. 兽类学报, 2023, 43(3): 293-303. |
[3] | 张良志, 唐显江, 任世恩, 赵雅琪, 张堰铭. 室内饲养对高原鼠兔肠道微生物群落构建过程的影响[J]. 兽类学报, 2022, 42(5): 519-530. |
[4] | 吴学琴, 陈慧青, 张璐, 尚国珍, 吴雁, 边疆晖. 草地退化影响高原鼠兔血清总IgG水平、肠道寄生物感染及肝脏和肾脏指数[J]. 兽类学报, 2022, 42(5): 531-539. |
[5] | 张湑泽, 付林, 邹小艳, 都玉蓉. 低氧暴露下高原鼠兔肺组织间隙连接蛋白40表达分析[J]. 兽类学报, 2022, 42(5): 572-578. |
[6] | 范超, 张良志, 付海波, 刘传发, 李文靖, 张贺, 唐显江, 程琪, 沈文娟, 张堰铭. 高原鼠兔肠道微生物中丰富及稀有类群的季节性特征[J]. 兽类学报, 2021, 41(6): 617-630. |
[7] | 张永俊, 和育超, 赵娟钧, 陈尧, 李延鹏, 黄志旁, 崔亮伟, 肖文. 云岭自然保护区拉沙山区域亚洲黑熊的活动模式[J]. 兽类学报, 2021, 41(2): 136-143. |
[8] | 华铣泽 周睿 叶国辉 花蕊 包达尔罕 花立民. 雄性高原鼠兔长鸣时间分配及其影响因素[J]. 兽类学报, 2020, 40(6): 606-614. |
[9] | 王作波 胡一鸣 周智鑫 梁健超 黄志文 郑舒旸 周江 胡慧建. 东喜马拉雅勒布沟非飞行小型兽类物种多样性垂直分布格局[J]. 兽类学报, 2020, 40(5): 493-502. |
[10] | 刘邦友 张廷跃 梁 盛 白小节 刘伟. 贵州赤水桫椤国家级自然保护区及其周边区域鸟兽多样性红外相机监测对比[J]. 兽类学报, 2020, 40(5): 503-519. |
[11] | 罗莲莲 周宏 唐俊峰 韦伟 韩菡 张泽钧 洪明生. 大熊猫与同域动物在海拔分布上的生态位分化[J]. 兽类学报, 2020, 40(4): 337-345. |
[12] | 李双 邹小艳 付林 刘忠浩 白祥慧 都玉蓉 郭松长. 高原鼠兔和昆明白小鼠肺组织结构比较[J]. 兽类学报, 2020, 40(2): 162-169. |
[13] | 谭春桃 余义博 姜占萍 钟亮 张堰铭 曲家鹏. 不同海拔地区高原鼠兔探究性和静止代谢率的差异[J]. 兽类学报, 2020, 40(1): 27-36. |
[14] | 王玉军 贾功雪 王婷 王秀蓉 刘忠浩 都玉蓉 马建滨. 光周期-褪黑素信号调控高原鼠兔精原细胞分化和季节性精子发生[J]. 兽类学报, 2020, 40(1): 54-63. |
[15] | 侯楚 尚国珍 吴学琴 曹伊凡 陈家辉 边疆晖. 高原鼠兔胃与结肠内容物食性分析方法的比较[J]. 兽类学报, 2019, 39(6): 662-669. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||