ACTA THERIOLOGICA SINICA ›› 2022, Vol. 42 ›› Issue (4): 451-460.DOI: 10.16829/j.slxb.150639
• METHOD AND TECHNOLOGY • Previous Articles Next Articles
Yu QI1(), Han SU1, Rong HOU2,3, Peng LIU2,3, Peng CHEN2,3(), Hangxing ZANG1, Zhihe ZHANG3
Received:
2021-11-17
Accepted:
2022-03-14
Online:
2022-07-30
Published:
2022-07-22
Contact:
Peng CHEN
漆愚1(), 苏菡1, 侯蓉2,3, 刘鹏2,3, 陈鹏2,3(), 臧航行1, 张志和3
通讯作者:
陈鹏
作者简介:
漆愚 (1997- ),男,硕士研究生,主要从事计算机视觉和姿态估计研究. E-mail: qiyu007@foxmail.com
基金资助:
CLC Number:
Yu QI, Han SU, Rong HOU, Peng LIU, Peng CHEN, Hangxing ZANG, Zhihe ZHANG. Giant panda pose estimation method based on high resolution net[J]. ACTA THERIOLOGICA SINICA, 2022, 42(4): 451-460.
漆愚, 苏菡, 侯蓉, 刘鹏, 陈鹏, 臧航行, 张志和. 基于高分辨率网络的大熊猫姿态估计方法[J]. 兽类学报, 2022, 42(4): 451-460.
Fig.2 Diagram of the joint points of the giant panda. 1: right ear; 2: left ear; 3: nose; 4: neck; 5: back; 6: hip; 7: right shoulder; 8: right elbow; 9: right front paw; 10: left shoulder; 11: left elbow; 12: left front paw; 13: right hip; 14: right knee; 15: right hind paw; 16: left hip; 17: left knee; 18: left hind paw; 19: the giant panda target box
Fig.3 The proposed giant panda pose estimation framework. The first stage is shared feature representation, the second stage is multi-branched structures for learning specific high-level feature representations
Fig.6 Diagram of the grouping of giant panda joints. The giant panda joint points are divided into 5 groups by the dotted frame, and the joint points of the same group have the same color
方法 Methods | PCK@0.05 Accuracy For the Panda Dataset (%) | ||||
---|---|---|---|---|---|
耳 Ear | 鼻 Nose | 躯干Trunk | 腿部Legs | 平均Mean | |
8-Stack HG | 93.99 | 97.50 | 68.22 | 71.84 | 74.12 |
Simple Baseline | 97.39 | 98.18 | 74.39 | 78.10 | 80.00 |
HRNet32 | 96.97 | 98.75 | 75.63 | 78.72 | 80.31 |
This study | 98.38 | 98.18 | 75.84 | 79.84 | 81.51 |
Table 1 Comparison results of pose estimation of giant panda
方法 Methods | PCK@0.05 Accuracy For the Panda Dataset (%) | ||||
---|---|---|---|---|---|
耳 Ear | 鼻 Nose | 躯干Trunk | 腿部Legs | 平均Mean | |
8-Stack HG | 93.99 | 97.50 | 68.22 | 71.84 | 74.12 |
Simple Baseline | 97.39 | 98.18 | 74.39 | 78.10 | 80.00 |
HRNet32 | 96.97 | 98.75 | 75.63 | 78.72 | 80.31 |
This study | 98.38 | 98.18 | 75.84 | 79.84 | 81.51 |
Fig.7 Example image of giant panda pose estimation prediction. The first three columns are the giant panda pose estimates predicted by the comparison model, the fourth column is the prediction result of the model proposed in this paper, and the last column is the true value of the pose estimation
方法 Methods | PCK@0.05 Accuracy For the Panda Dataset (%) | ||||
---|---|---|---|---|---|
耳 Ear | 鼻Nose | 躯干 Trunk | 腿部 Legs | 平均 Mean | |
HRNet32 | 96.97 | 98.75 | 75.63 | 78.72 | 80.31 |
HRNet32 + Multi‑Branches | 97.34 | 98.86 | 74.39 | 79.58 | 80.75 |
HRNet32 + ASPP + MultiBranches | 98.38 | 98.18 | 75.84 | 79.84 | 81.51 |
Table 2 Results of ablation experiment for giant panda pose estimation
方法 Methods | PCK@0.05 Accuracy For the Panda Dataset (%) | ||||
---|---|---|---|---|---|
耳 Ear | 鼻Nose | 躯干 Trunk | 腿部 Legs | 平均 Mean | |
HRNet32 | 96.97 | 98.75 | 75.63 | 78.72 | 80.31 |
HRNet32 + Multi‑Branches | 97.34 | 98.86 | 74.39 | 79.58 | 80.75 |
HRNet32 + ASPP + MultiBranches | 98.38 | 98.18 | 75.84 | 79.84 | 81.51 |
Fig.8 The giant panda pose estimation of this study model. a: The prediction result of the model with good shooting Angle and small occlusion; b: The prediction result of the model with dark surrounding environment and serious self-occlusion
Cao J K, Tang H Y, Fang H S, Shen X Y, Tai Y W, Lu C W. 2019. Cross-domain adaptation for animal pose estimation. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). DOI:10.1109/iccv.2019.00959 . | |
Cao Z, Simon T, Wei S E, Sheikh Y. 2017. Realtime multi-person 2d pose estimation using part affinity fields. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1109/cvpr.2017.143 . | |
Caruana R. 1997. Multitask learning. Machine Learning, 28 (1): 41-75. | |
Chen L C, Papandreou G, Schroff F, Adam H. 2017. Rethinking atrous convolution for semantic Image segmentation. arXiv preprint arXiv: . | |
Chen X L, Zhu Y, Li Y D, Zhang G Q. 2016. The influence of human activities on the behavior of captive giant panda in summer at Mount Emei. Sichuan Journal of Zoology, 35 (5): 680-685. (in Chinese) | |
Chen Y K, Song Y N, He J J, Xu R H, Huang X B. 2019. Animal pose estimation and state assessment based on deep learning. Electronics World, (5): 47-48. (in Chinese) | |
Chen Y L, Wang Z C, Peng Y X, Zhang Z Q, Yu G, Sun J. 2018. Cascaded pyramid network for multi-person pose estimation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. DOI: 10.1109/cvpr.2018.00742 . | |
Fang H S, Xie S Q, Tai Y W, Lu C W. 2017. Rmpe: Regional multi-person pose estimation. 2017 IEEE International Conference on Computer Vision (ICCV). DOI: 10.1109/iccv.2017.256 . | |
Feng L Q, Zhao Y Q, Sun Y C, Zhao W X, Tang J X. 2021. Action recognition using a spatial-temporal network for wild felines. Animals, 11 (2): 485. | |
He K M, Zhang X Y, Ren S Q, Sun J. 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1109/cvpr.2016.90 . | |
He Q, Zhao Q J, Liu N, Chen P, Zhang Z H, Hou R. 2019. Distinguishing individual red pandas from their faces. Chinese Conference on Pattern Recognition and Computer Vision (PRCV). DOI: 10.1007/978-3-030-31723-2_61 . | |
Hu P Y, Ramanan D. 2016. Bottom-up and top-down reasoning with hierarchical rectified gaussians. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1109/cvpr.2016.604 . | |
Koolhaas J M, Van Reenen C G. 2016. Animal behavior and well-being symposium: Interaction between coping style/personality, stress, and welfare: Relevance for domestic farm animals. Journal of Animal Science, 94 (6): 2284-2296. | |
Li C W, Wang C D, Yan B Y, Chen S J, Wu H L, Huang X Y, Jin S Y, Huang S, Chen L, Li D S. 2012. The determination of blood physiological indices for the giant panda. Acta Theriologica Sinica, 32 (3): 266-270. (in Chinese) | |
Li C, Lee G H. 2021. From synthetic to real: Unsupervised domain adaptation for animal pose estimation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. | |
Li X Y, Cai C, Zhang R F, Ju L, He J R. 2019. Deep cascaded convolutional models for cattle pose estimation. Computers and Electronics in Agriculture, 164: 104885. | |
Lin T Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick C L. 2014. Microsoft coco: Common objects in context. European Conference on Computer Vision. | |
Liu J, Chen Y, Guo L R, Gu B, Liu H, Hou A Y, Liu X F, Sun L X, Liu D Z. 2006. Stereotypic behavior and fecal cortisol level in captive giant pandas in relation to environmental enrichment. Zoo Biology, 25 (6): 445-459. | |
Liu N, Zhao Q J, Zhang N, Cheng X H, Zhu J N. 2019. Pose‑guided complementary features learning for amur tiger re-identification. Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. | |
Mu J T, Qiu W C, Hager G D, Yuille A L. 2020. Learning from synthetic animals. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1109/cvpr42600.2020.01240 . | |
Newell A, Yang K Y, Deng J. 2016. Stacked hourglass networks for human pose estimation. European Conference on Computer Vision. DOI: 10.1007/978-3-319-46484-8_29 . | |
Olivas E S, Guerrero J D M, Martinez-Sober M, Magdalena-Benedito J R, Serrano L, eds. 2019. Handbook of research on machine learning applications and trends: Algorithms, methods, and techniques: Algorithms, methods, and techniques. IGI Global. | |
Pishchulin L, Andriluka M, Gehler P, Schiele B. 2013. Poselet conditioned pictorial structures. 2013 IEEE Conference on Computer Vision and Pattern Recognition. DOI: 10.1109/cvpr.2013.82 . | |
Pishchulin L, Insafutdinov E, Tang S Y, Andres B, Andriluka M, Gehler P, Schiele B. 2016. Deepcut: Joint subset partition and labeling for multi person pose estimation. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1109/cvpr.2016.533 . | |
Ruder S. 2017. An overview of multi-task learning in deep neural networks. arXiv preprint arXiv: . | |
Rushen J, Butterworth A, Swanson J C. 2011. Animal behavior and well-being symposium: Farm animal welfare assurance: Science and application. Journal of Animal Science, 89 (4): 1219-1228. | |
Schofield D, Nagrani A, Zisserman A, Hayashi M, Matsuzawa T, Biro D, Carvalho S. 2019. Chimpanzee face recognition from videos in the wild using deep learning. Science Advances, 5 (9): eaaw0736. | |
Sun K, Xiao B, Liu D, Wang J D. 2019. Deep high-resolution representation learning for human pose estimation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1109/cvpr.2019.00584 . | |
Tang W, Wu Y. 2019. Does learning specific features for related parts help human pose estimation? 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1109/cvpr.2019.00120 . | |
Tian Y D, Zitnick C L, Narasimhan S G. 2012. Exploring the spatial hierarchy of mixture models for human pose estimation. European Conference on Computer Vision. DOI: 10.1007/978-3-642-33715-4_19 . | |
Toshev A, Szegedy C. 2014. Deeppose: Human pose estimation via deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. | |
Wang H N, Su H, Chen P, Hou R, Zhang Z H, Xie W Y. 2019. Learning deep features for giant panda gender classification using face images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. | |
Xiao B, Wu H P, Wei Y C. 2018. Simple baselines for human pose estimation and tracking. Proceedings of the European Conference on Computer Vision (ECCV). DOI: 10.1007/978-3-030-01231-1_29 . | |
Yang W, Li S, Ouyang W L, Li H S, Wang X G. 2017. Learning feature pyramids for human pose estimation. Proceedings of the IEEE International Conference on Computer Vision. DOI: 10.1109/iccv.2017.144 . | |
Yang Y, Jia J B, Zhao Y J. 2019. Effects of human factors on panda behavior in captivity. Journal of Northeast Forestry University, 47 (12): 104-106. (in Chinese) | |
Yu H, Xu Y F, Zhang J, Zhao W, Guan Z Y, Tao D C. 2021. AP- 10K: A benchmark for animal pose estimation in the wild. arXiv preprint arXiv: . | |
Yue L H, Li J X, Liu Q S. 2021. Body parts relevance learning via expectation–maximization for human pose estimation. Multimedia Systems, 27 (5): 927-939. | |
Zhang B W, Li M, Zhang Z J, Goossens B, Zhu L F, Zhang S N, Hu J C, Bruford M W, Wei F W. 2007. Genetic viability and population history of the giant panda, putting an end to the‘Evolutionary Dead End’? Molecular Biology and Evolution, 24 (8): 1801-1810. | |
Zhang F Y, Wang M L, Wang Z C. 2021. Construction of the animal skeletons keypoint detection model based on transformer and scale fusion. Transactions of the Chinese Society of Agricultural Engineering, 37 (23): 179-185. (in Chinese) | |
Zhou F X, Jiang Z H, Liu Z H, Chen F, Chen L, Tong L, Yang Z L, Wang H K, Fei M R, Li L, Zhou H Y. 2021. Structured context enhancement network for mouse pose estimation. IEEE Transactions on Circuits and Systems for Video Technology. DOI:10.1109/tcsvt.2021.3098497 . | |
Zhou J L, Ma G Q, Li Q S, Liu C H, Liu D D, Ye Y L, Wang X B. 2012. Exploitation on spring stereotypic behavior of giant pandas in wildlife park of high‑altitude region. Sichuan Journal of Zoology, 31 (3): 342-347. (in Chinese) | |
Zhou X, Hu H P, Li T, Deng L H, Li R G. 2013. Behavior and conservation of giant panda. Green Technology, (2): 33-36. (in Chinese) | |
李才武, 王承东, 严玉宝, 陈世界, 吴虹林, 黄晓宇, 金森燕, 黄山, 陈亮, 李德生. 2012. 大熊猫血液生理指标的测定. 兽类学报, 32 (3): 266-270. | |
李凯年. 2012. 饲养人员行为对农场动物福利与生产性能的影响. 中国动物保健, 14 (1): 4-8. | |
杨勇, 贾竞波, 赵英杰. 2019. 圈养环境中人为因素对大熊猫行为的影响. 东北林业大学学报, 47 (12): 104-106. | |
陈永康, 宋亚男, 何嘉俊, 徐荣华, 黄栩滨. 2019. 基于深度学习的动物姿态估计和状态评估研究. 电子世界, (5): 47-48. | |
陈艳, 王永峰, 魏荣平, 邓林华. 2019. 圈养大熊猫应激的研究进展. 畜牧兽医科技信息, (2): 15-17. | |
陈绪玲, 朱英, 李裕冬, 张贵权. 2016. 人为因素对峨眉山圈养大熊猫夏季行为的影响. 四川动物, 35 (5): 680-685. | |
张飞宇, 王美丽, 王正超. 2021. 引入Transformer和尺度融合的动物骨骼关键点检测模型构建. 农业工程学报, 37 (23): 179-185. | |
周杰珑, 马国强, 李奇生, 刘成会, 刘丹丹, 叶研琳, 王雄波. 2012. 高海拔地区昆明野生动物园大熊猫春季刻板行为探究. 四川动物, 31 (3): 342-347. | |
周晓, 胡海平, 李倜, 邓林华, 李仁贵. 2013. 大熊猫的行为和保护研究. 绿色科技, (2): 33-36. |
[1] | HE Hui, JIANG Min, XIE Wenwen, HUANG Yu, ZHANG Yueming, WU Sujuan, ZHANG Pan, QI Cheng, LUO Chuan, LI Junlin, LUO Peng, YANG Hao. The research on restoration priority assessment of damaged giant panda habitats based on multi-criteria decision analysis of AHP-OWA [J]. ACTA THERIOLOGICA SINICA, 2024, 44(4): 395-410. |
[2] | SUN Mengmeng, YAN Xiao, LI Feng, TANG Yong, ZHANG Xinxing, DONG Chao, HUANG Shengjie, ZHENG Yuanming, LUO Yong, ZHOU Shiqiang. Ontogeny and the influencing factors of bite force and feeding rate of giant pandas (Ailuropoda melanoleuca) [J]. ACTA THERIOLOGICA SINICA, 2024, 44(2): 135-145. |
[3] | ZHOU Xiao, YANG Bo, ZENG Wen, LI Guo, YANG Changjiang, WANG Jing, XIE Qingyang, LIU Huaiting, WANG Rui, LUO Bo, ZHANG Mingchun, HUANG Yan. Relationship between maternal fecal cortisol levels and mother-infant behaviors in early nursing period of giant panda [J]. ACTA THERIOLOGICA SINICA, 2024, 44(2): 209-216. |
[4] | WU Kai, LAI Jiaying, WEI Ming, ZHANG Yahui, ZENG Xianyin, WEI Rongping, CAO Xiao-han, HU Zhengquan, ZENG Wen, WANG Chengdong, KONG Fanli. Effects of fostering methods on the growth and development of giant panda cubs with different birth weight [J]. ACTA THERIOLOGICA SINICA, 2024, 44(2): 217-223. |
[5] | ZHONG Junjie, NIU Bing, CHEN Qin, CHEN Xiang, WANG Yan. Application of deep learning in wildlife conservation [J]. ACTA THERIOLOGICA SINICA, 2023, 43(6): 734-744. |
[6] | ZHANG Rumei, ZHANG Qing, YANG Xiao, ZHANG Farui, ZHAO Ding, PANG Dehong, YANG Kong, GUAN Tianpei. Spatial and temporal distribution patterns of mammal diversity in alpine ecosystems: a case study in Xuebaoding area of Giant Panda National Park [J]. ACTA THERIOLOGICA SINICA, 2023, 43(5): 533-543. |
[7] | SU Xiaoyan, YANG Mei, YAN Xia, HOU Rong, XIAO Mei, WANG Jinsong, LIU Sheng, WANG Lucai, ZHANG Wenping, HUANG Hongxiu. Epidemiology and antibiotics resistance of Escherichia coli from wild animals and their environment in Guangyuan area of Giant Panda National Park [J]. ACTA THERIOLOGICA SINICA, 2023, 43(4): 430-442. |
[8] | YAN Zheng, LIU Haoqiu, LIU Xiaoyan, XU Haihong, LIU Yanhui, LI Changqing, WANG Bo, LIU Xuefeng, CUI Shengnan, JIA Ting, YANG Di, ZHANG Chenglin, LIU Dingzhen. A comparative study on fecal sample pretreatment and hormone extraction methods in giant pandas (Ailuropoda melanoleuca) [J]. ACTA THERIOLOGICA SINICA, 2023, 43(4): 465-471. |
[9] | Mingxi LI, Huanliu HE, Hao ZHANG, Han LI, Tao DENG, Min CHEN, Hairui WANG, Ying YAO. Analysis of the nutritional status of vitamins and trace elements in adult male captive giant pandas at different feeding stages [J]. ACTA THERIOLOGICA SINICA, 2023, 43(3): 333-341. |
[10] | AN Junhui, LI Yuan, WANG Donghui, CHEN Jiasong, LI Hongyan, LIANG Xiaohu, FENG Tongying, CAI Zhigang, HOU Rong, ZENG Changjun, LIU Yuliang. Isolation, identification, and miRNAs enrichment analysis of exosomes derived from giant panda umbilical cord mesenchymal stem cells [J]. ACTA THERIOLOGICA SINICA, 2023, 43(1): 33-40. |
[11] | ZHOU Zhangyu, HOU Jiaping, LIU Peng, CHEN Peng, DUAN Chang. Giant panda head image segmentation based on dual model fusion [J]. ACTA THERIOLOGICA SINICA, 2023, 43(1): 82-88. |
[12] | Shiqiang ZHOU, Shengshan HE, Yuanyuan QU, Yong LUO, Daifu WU, Yan HUANG, Desheng LI, Hemin ZHANG. Diet conversions of pre-released giant panda (Ailuropoda melanoleuca) cubs [J]. ACTA THERIOLOGICA SINICA, 2022, 42(6): 652-664. |
[13] | WANG Donghui, LIU Yuliang, SHEN Fujun, CAI Zhigang, AN Junhui, HOU Rong. The effect of frozen semen of captive giant pandas on their population genetic diversity [J]. ACTA THERIOLOGICA SINICA, 2022, 42(3): 261-269. |
[14] | HUANG Wenjun, LUO Li, CHEN Xin, LIU Li, LIAO Lihui, WANG Xiaolan, LI Bi, LI Mingxi, CHEN Min, YI Dejiao, LI Han, ZHANG Hao, ZHUO Guifu, LIU Yunjian, LI Yingxin, CHEN Yijun, ZHOU Xuan, XIE Yue. Observation on antinematode activity of the recombinant Bacillus thuringiensis-derived Cry5B against the giant panda Baylisascaris schroederi in vitro [J]. ACTA THERIOLOGICA SINICA, 2022, 42(3): 304-311. |
[15] | WANG Ziye, BI Wenlei, WU Wei, YU Jiaojiao, ZHOU Yanshan, HOU Rong, XIANG Zuofu, QI Dunwu. A study on the relationship between oxytocin level and maternal behavior in captive giant pandas [J]. ACTA THERIOLOGICA SINICA, 2021, 41(6): 721-730. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||