兽类学报 ›› 2023, Vol. 43 ›› Issue (3): 304-314.DOI: 10.16829/j.slxb.150671
邹书珍1,2, 罗亚1,2, 程鸣1,2, 王凡1,2, 黎大勇1,2, 康迪1,2, 唐贇1,2()
收稿日期:
2022-03-24
接受日期:
2022-10-19
出版日期:
2023-05-31
发布日期:
2023-05-18
通讯作者:
唐贇
作者简介:
邹书珍 (1990- ),女,副教授,博士,主要从事微生物生态方面的研究.
基金资助:
Shuzhen ZOU1,2, Ya LUO1,2, Ming CHENG1,2, Fan WANG1,2, Dayong LI1,2, Di KANG1,2, Yun TANG1,2()
Received:
2022-03-24
Accepted:
2022-10-19
Online:
2023-05-31
Published:
2023-05-18
Contact:
Yun TANG
摘要:
野生动物肠道是微生物抗生素抗性基因 (Antibiotic resistance genes, ARGs) 的储存库,滇金丝猴 (Rhinopithecus bieti) 在动物展示区存在ARGs暴露的风险。本研究基于16S rRNA技术,测定展示区不同性别滇金丝猴的肠道微生物组成,利用定量聚合酶链反应 (quantitative polymerase chain reaction, qPCR) 技术检测其肠道微生物四环素类抗生素抗性基因 (Tetracycline antibiotic resistance genes, T-ARGs) 和可移动遗传元件 (Mobile genetic elements, MGEs) 丰度,并分析其肠道酶活性和营养物质含量特征;利用网络模型 (NetWork) 分析T-ARGs和MGEs的潜在宿主菌,简单相关关系分析肠道微生物T-ARGs和 MGEs的丰度与滇金丝猴肠道的微生态环境特征的关系。结果表明,滇金丝猴雌性和雄性肠道微生物T-ARGs和MGEs的绝对丰度差异不显著;雌性肠道中疣微菌门 (Verrucomicrobia) 和纤维杆菌门 (Fibrobacteres) 相对丰度显著低于雄性,而纤维素酶和蛋白酶活力显著高于雄性。滇金丝猴肠道微生物的T-ARGs可作为其展示区健康风险的指示因子,展示区的滇金丝猴可能存在3个风险:(1) 条件致病菌是T-ARGs的潜在宿主菌,利用四环素类抗生素对展示区的滇金丝猴进行疾病治疗时,该致病菌可能具有产生耐药性的风险;(2) 脂肪酶活力、蛋白酶活力和纤维素酶活力能够提高MGEs的转移能力,说明维持展示区滇金丝猴的肠道消化能力的管理方式可能与降低T-ARGs转移能力的目标相悖;(3) T-ARGs抑制滇金丝猴对蛋白质的消化和氨基酸的吸收。建议对展示区滇金丝猴的ARGs污染源加以控制,以保障滇金丝猴肠道微生态环境的稳定和降低致病菌的耐药性,与雌性滇金丝猴相比,雄性滇金丝猴个体的健康状况更应该重视。
中图分类号:
邹书珍, 罗亚, 程鸣, 王凡, 黎大勇, 康迪, 唐贇. 滇金丝猴肠道微生物四环素抗性基因和肠道环境特征[J]. 兽类学报, 2023, 43(3): 304-314.
Shuzhen ZOU, Ya LUO, Ming CHENG, Fan WANG, Dayong LI, Di KANG, Yun TANG. Characteristics of tetracycline antibiotic resistance genes in intestinal microorganisms and intestinal environment of Yunnan snub-nosed monkeys[J]. ACTA THERIOLOGICA SINICA, 2023, 43(3): 304-314.
基因名称 Gene name | 上游引物 Forward primer | 下游引物 Reverse primer |
---|---|---|
tet (B) | AGTGCGCTTTGGATGCTGTA | AGCCCCAGTAGCTCCTGTGA |
tet (C) | CATATCGCAATACATGCGAAAAA | AAAGCCGCGGTAAATAGCAA |
tet (O) | ATGTGGATACTACAACGCATGAGATT | TGCCTCCACATGATATTTTTCCT |
tet (X) | AAATTTGTTACCGACACGGAAGTT | CATAGCTGAAAAAATCCAGGACAGTT |
tet (A) | GCTGTTTGTTCTGCCGGAAA | GGTTAAGTTCCTTGAACGCAAACT |
tet (D) | TGCCGCGTTTGATTACACA | CACCAGTGATCCCGGAGATAA |
tet (E) | TTGGCGCTGTATGCAATGAT | CGACGACCTATGCGATCTGA |
tet (M) | CATCATAGACACGCCAGGACATAT | CGCCATCTTTTGCAGAAATCA |
intI | GGCATCCAAGCAGCAAG | AAGCAGACTTGACCTGA |
intI2 | CAC GGA TAT GCG ACA AAA AGG T | GTA GCA AAC GAG TGA CGA AAT G |
intI1 | CGAACGAGTGGCGGAGGGTG | TACCCGAGAGCTTGGCACCCA |
IS613 | AGGTTCGGACTCAATGCAACA | TTCAGCACATACCGCCTTGAT |
tnpA-01 | CATCATCGGACGGACAGAATT | GTCGGAGATGTGGGTGTAGAAAGT |
tnpA-02 | GGGCGGGTCGATTGAAA | GTGGGCGGGATCTGCTT |
tnpA-03 | AATTGATGCGGACGGCTTAA | TCACCAAACTGTTTATGGAGTCGTT |
表 1 本研究中使用的引物列表
Table 1 Primer list used in this study
基因名称 Gene name | 上游引物 Forward primer | 下游引物 Reverse primer |
---|---|---|
tet (B) | AGTGCGCTTTGGATGCTGTA | AGCCCCAGTAGCTCCTGTGA |
tet (C) | CATATCGCAATACATGCGAAAAA | AAAGCCGCGGTAAATAGCAA |
tet (O) | ATGTGGATACTACAACGCATGAGATT | TGCCTCCACATGATATTTTTCCT |
tet (X) | AAATTTGTTACCGACACGGAAGTT | CATAGCTGAAAAAATCCAGGACAGTT |
tet (A) | GCTGTTTGTTCTGCCGGAAA | GGTTAAGTTCCTTGAACGCAAACT |
tet (D) | TGCCGCGTTTGATTACACA | CACCAGTGATCCCGGAGATAA |
tet (E) | TTGGCGCTGTATGCAATGAT | CGACGACCTATGCGATCTGA |
tet (M) | CATCATAGACACGCCAGGACATAT | CGCCATCTTTTGCAGAAATCA |
intI | GGCATCCAAGCAGCAAG | AAGCAGACTTGACCTGA |
intI2 | CAC GGA TAT GCG ACA AAA AGG T | GTA GCA AAC GAG TGA CGA AAT G |
intI1 | CGAACGAGTGGCGGAGGGTG | TACCCGAGAGCTTGGCACCCA |
IS613 | AGGTTCGGACTCAATGCAACA | TTCAGCACATACCGCCTTGAT |
tnpA-01 | CATCATCGGACGGACAGAATT | GTCGGAGATGTGGGTGTAGAAAGT |
tnpA-02 | GGGCGGGTCGATTGAAA | GTGGGCGGGATCTGCTT |
tnpA-03 | AATTGATGCGGACGGCTTAA | TCACCAAACTGTTTATGGAGTCGTT |
图1 滇金丝猴肠道微生物T-ARGs和MGEs的绝对丰度. A:基因修饰机制的T-ARGs;B:核糖体保护机制的T-ARGs;C:外泵机制的T-ARGs;D:MGEs基因. 相同小写字母表示雌性和雄性间差异不显著 (P ≥ 0. 05). F1 ~ F4表示4只雌性个体;M1 ~ M4表示4只雄性个体
Fig.1 Absolute abundances of T-ARGs and MGEs in intestinal microorganisms of R.bieti. A: T-ARGs of modification mechanism; B: T-ARGs of ribosomal protection mechanism; C: T-ARGs of expump mechanism; D: MGEs. The same lowercase indicates there are no significant difference between female and male (P ≥ 0. 05). F1 to F4 are the 4 female R.bieti individuals and M1 to M4 are the 4 males R.bieti individuals
图2 滇金丝猴肠道微生物的相对丰度.A:门水平微生物;B:属水平微生物. *表示雌性和雄性间差异显著 (P < 0.05). F1 ~ F4表示4只雌性个体;M1 ~ M4表示4只雄性个体
Fig. 2 Relative abundances of intestinal microorganisms of R.bieti. A: intestinal microorganisms in phylum level; B: intestinal microorganisms ingenus level. * indicates there are significant difference between female and male (P < 0. 05). F1 to F4 are the 4 female R.bieti individuals and M1 to M4 are the 4 males R.bieti individuals
图3 滇金丝猴肠道的酶活力和营养物质含量. 图中不同小写字母表示雌性和雄性间差异显著 (P < 0.05). F1 ~ F4表示4只雌性个体;M1 ~ M4表示4只雄性个体
Fig. 3 Enzyme activity and nutrient content in intestine of R.bieti. The different lowercase indicates there are significant difference between female and male (P < 0.05). F1 to F4 are the 4 female R.bieti individuals and M1 to M4 are the 4 males R.bieti individuals
图4 滇金丝猴肠道中T-ARGs和MGEs与微生物的Network网络分析. 红色线段表示显著正相关 (P < 0.05),绿色线段表示显著负相关 (P < 0.05),蓝色节点表示微生物种类,黄色节点表示T-ARGs,绿色节点表示MGEs,节点的大小表示与其他物种的关联关系的多少,相关的因素数量越多,点的半径越大
Fig. 4 Network analysis on T-ARGs, MGEs and microorganisms in the intestine of R.bieti. The red line segments indicate significant positive correlation (P < 0.05), while the green line segments indicate significant negative correlation (P < 0.05). The blue nodes represent microbial species, the yellow nodes represent the T-ARGs and the green nodes represent the MGEs. The size of the dot indicates the number of associations with other species, and the larger the number of related factors, the larger the radius of the dots
指标 Indices | 核糖体保护机制的T-ARGs T-ARGs of protecting ribosomes | 外泵机制的T-ARGs T-ARGs of efflux pump | MGEs | 淀粉酶活力 Amylase activity | 脂肪酶活力 Lipase activity | 蛋白酶活力 Protease activity | 纤维素酶活力 Cellulose activity | 蛋白质含量 Protein content | 氨基酸 含量 amino acids contents |
---|---|---|---|---|---|---|---|---|---|
基因修饰机制的T-ARGs T-ARGs of gene modification | -0.180 | 0.151 | 0.212 | 0.111 | 0.327 | 0.482 | 0.379 | 0.064 | 0.162 |
核糖体保护机制的T-ARGs T-ARGs of protecting ribosomes | 0.336 | -0.149 | -0.079 | -0.215 | -0.101 | -0.092 | -0.452 | -0.574 | |
外泵机制的T-ARGs T-ARGs of efflux pump | -0.439 | 0.461 | -0.445 | -0.323 | -0.378 | -0.641* | -0.710* | ||
MGEs | 0.210 | 0.895** | 0.917** | 0.976** | 0.637* | 0.646* | |||
淀粉酶活力 Amylase activity | 0.395 | 0.201 | 0.147 | -0.374 | -0.251 | ||||
脂肪酶活力 Lipase activity | 0.899** | 0.871** | 0.474 | 0.612 | |||||
蛋白酶活力 Protease activity | 0.966** | 0.512 | 0.577 | ||||||
纤维素酶活力 Cellulose activity | 0.600 | 0.608 | |||||||
蛋白质含量 Protein content | 0.953** |
表2 滇金丝猴肠道T-ARGS和MGEs与环境特征之间的相关系数
Table 2 Correlation coefficients between T-ARGs and MGEs in intestinal microorganisms and environmental characteristics in R.bieti
指标 Indices | 核糖体保护机制的T-ARGs T-ARGs of protecting ribosomes | 外泵机制的T-ARGs T-ARGs of efflux pump | MGEs | 淀粉酶活力 Amylase activity | 脂肪酶活力 Lipase activity | 蛋白酶活力 Protease activity | 纤维素酶活力 Cellulose activity | 蛋白质含量 Protein content | 氨基酸 含量 amino acids contents |
---|---|---|---|---|---|---|---|---|---|
基因修饰机制的T-ARGs T-ARGs of gene modification | -0.180 | 0.151 | 0.212 | 0.111 | 0.327 | 0.482 | 0.379 | 0.064 | 0.162 |
核糖体保护机制的T-ARGs T-ARGs of protecting ribosomes | 0.336 | -0.149 | -0.079 | -0.215 | -0.101 | -0.092 | -0.452 | -0.574 | |
外泵机制的T-ARGs T-ARGs of efflux pump | -0.439 | 0.461 | -0.445 | -0.323 | -0.378 | -0.641* | -0.710* | ||
MGEs | 0.210 | 0.895** | 0.917** | 0.976** | 0.637* | 0.646* | |||
淀粉酶活力 Amylase activity | 0.395 | 0.201 | 0.147 | -0.374 | -0.251 | ||||
脂肪酶活力 Lipase activity | 0.899** | 0.871** | 0.474 | 0.612 | |||||
蛋白酶活力 Protease activity | 0.966** | 0.512 | 0.577 | ||||||
纤维素酶活力 Cellulose activity | 0.600 | 0.608 | |||||||
蛋白质含量 Protein content | 0.953** |
Bao S D. 2000. Soil Agrochemical Analysis. Beijing: China Agriculture Press. (in Chinese) | |
Cai K K, Huang Z W, Ye D J, Sun C T. 2011. Regulation of intestinal flora of probiotics and its immune function. China Feed, 18: 34-37. (in Chinese) | |
Cheng M. 2021. Study on intestinal microbial diversity of Yunnan snub‑nosed monkey and Sichuan snub‑nosed monkey. Master thesis. Nanchong: China West Normal University. (in Chinese) | |
Chopra I. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistanc. Microbiology & Molecular Biology Reviews, 65 (2): 232-260. | |
Cristina M, Lin C, Marina C, Massimo M, Luisa M H, Louise K, Mohney R P, Steves C J, Spector T D, Kuo C F. 2018. Gut microbial diversity is associated with lower arterial stiffness in women. European Heart Journal, 39 (25): 2390-2397. | |
Ding J R, Zhang Q X, Liu X M, Wang G, Tian W F, Zhang H, Chen W. 2012. Quantity of desulfovibrios and analysis of intestinal microbiota diversity in health and intestinal disease people in Wuxi, Jiangsu Province. Acta Microbiologica Sinica, 8 (52): 1033-1039. (in Chinese) | |
Fahad S M, Zhu C X, Geng B, Raza A H, Song T T, Li H. 2021. The fate of antibiotic resistance genes in cow manure composting: shaped by temperature-controlled composting stages. Bioresource Technology, 320 (PB): 124403. | |
Fan X T, Li H, Chen Q L, Zhang Y S, Ye J, Zhu Y G, Su J Q. 2019. Fate of antibiotic resistant pseudomonas putida and broad host range plasmid in natural soil microcosms. Frontiers in Microbiology, 1 (10): 294. | |
Gou C L, Wang Y Q, Zhang X Q, Lou Y J, Gao Y H. 2017. Effects of high‑temperature composting on tetracyclines and tetracycline resistance genes in swine manure. Acta Scientiae Circumstantiae, 37 (4): 1454-1460. (in Chinese) | |
Grigor’Eva I N. 2021. Personalized medicine review gallstone disease, obesity and the firmicutes/bacteroidetes ratio as a possible biomarker of gut dysbiosis. Journal of Personalized Medicine, 11 (1): 13. | |
Guo A Y, Gu J, Wang X J, Zhang R R, Yin Y N, Sun W, Tuo X X, Zhang L. 2017. Effects of superabsorbent polymers on the abundances of antibiotic resistance genes, mobile genetic elements, and the bacterial community during swine manure composting. Bioresource Technology, 244 (1): 658-663. | |
Guo C, Xiang Z F, Ren B P, Li M. 2011. All-male unit’s spatial structure and its function of a moving troop in Rhinopithecus bieti . Journal of Central South University of Forestry & Technology, 31 (7): 136-139. (in Chinese) | |
Guo S T. 2004. Studies on foraging behaviorand of home range of the Sichuan golden monkey(Rhinopithecus roxellana). Master thesis. Xi’an: North West China University. (in Chinese) | |
Kintses B, Méhi O, Ari E, Számel M, Ádám G, Jangir P K, Nagy I, Pál F, Fekete G, Tengölics R, NyergesÁ, Likó I, Bálint A, Molnár T, Bálint B, Vásárhelyi B M, Bustamante M, Papp B, Pál C. 2019. Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota. Nature Microbiology, 4: 447-458. | |
Li W W, Li L, Wu G S, Zhang Y, Dai Y C, Zhou Y. 2016. Impact evaluation on the Yunnan snub‑nosed monkey’s habitat in terms of landscape connectivity by agricultural land with consideration at different scale scenarios. Acta Ecologica Sinica, 36 (24): 8136-8144. (in Chinese) | |
Li Z. 2021. Effect of standardized grape powder consumption on the gut microbiome of healthy subjects: a pilot study. Nutrients, 13 (11): 3965. | |
Liu H X, Clarissa A R, Dandekar S. 2016. Functional analysis of the relationship between intestinal microbiota and the expression of hepatic genes and pathways during the course of liver regeneration. Journal of Hepatology, 64 (3): 641-650. | |
Luo Y, Tang Y, Zhang D, Cheng M, Zou S Z, Zhang J D, Kang D. 2020. Research on microbiota and enzyme activity characteristics in the feces of giant pandas of different ages. Acta Veterinaria et Zootechnica Sinica, 51 (4): 763-771. (in Chinese) | |
Maynard C, Fairbrother J M, Bekal S, Sanschagrin F, Levesque R C, Brousseau R, Masson L, Larivière S, Harel J. 2003. Antimicrobial resistance genes in enterotoxigenic Escherichia coliO 149: K91 isolates obtained overa 23-year period from pigs. Antimicrob. Agents Chemother, 47: 3214-3221. | |
Mazhar S H, Li X, Rashid A, Su J, Rensing C. 2021. Co‑selection of antibiotic resistance genes, and mobile genetic elements in the presence of heavy metals in poultry farm environments. Science of the Total Environment, 755: 142702. | |
Pei R, Kim S C, Carlson K H, Pruden A. 2006. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Research, 40 (12): 2427-2435. | |
Penczek P, Grassucci R A, Trieber C A, Connell S R, Taylor D E, Nierhaus K H, Frank J. 2001. Localization of the ribosomal protection protein Tet (O) on the ribosome and the mechanism of tetracycline resistance. Molecular Cell, 7 (5): 1037-1045. | |
Raubenheimer D, Righini N, Ji W H, Jay O, He S J, Wu F, Li F F, Li B G. 2018. Nutrient-specific compensation for seasonal cold stress in a free‑ranging temperate colobine monkey. Functional Ecology, 32 (9): 2170-2180. | |
Su J Q, Bei W, Ouyang W Y, Huang F Y, Zhao Y, Xu H J, Zhu Y G. 2015. Antibiotic resistome and its association with bacterial communities during Sewage Sludge composting. Environmental Science & Technology, 49 (12): 7356-7363. | |
Tian Z, Zhang Y, Yang M. 2014. The origin,environmental distribution and potential application of tetracycline resistance gene-tet(X). Environmental Chemistry, 12: 2027-2037. | |
Tommi V, Aleksandar D K, Eva H, Heli S, Eric A F, Moran Y, Raivo K, Hera V, Timothy D A, Hämäläinen A M, Aleksandr P, Vallo T, Raivo U, Sergei M, Natalya D, Jorma I, Suvi M V, Susanne J S, Jeffrey A P, Harri L, Curtis H, Dirk G, Thomas W C, Mikael K, Ramnik J X. 2016. Variation in microbiome lps immunogenicity contributes to autoimmunity in humans. Cell, 165 (4): 842-853. | |
Wang J, Ma Z B, Zeng Z L, Yang X W, Huang Y, Liu J H. 2017. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zoological Research, 38 (2): 55-80. | |
Waters J L, Ley R E. 2019. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biology, 17 (1): 1-11. | |
Wei F W. 2016. Research progress in conservation biology of endangered mammals in China. Acta Theriologica Sinica, 36 (3): 255-269. | |
Wen W, Xu X L, Ou W G. 2013. Study on the carrying status of antibiotic resistance genes in children intestinal flora. Journal of Zunyi Medical University, 36 (2): 113-115. (in Chinese) | |
Wo H H. 2014. Identification and screening of intestinal probiotics from golden monkey in Shennongjia. Master thesis. Wuhan: Huazhong Agricultural University. (in Chinese) | |
Xia W C, Liu G Q, Wang D L, Chen H, Zhu L F, Li D Y. 2022. Functional convergence of Yunnan snub‑nosed monkey and bamboo-eating panda gut microbiomes revealing the driving by dietary flexibility on mammal gut microbiome. Computational and Structural Biotechnology Journal, 20: 695-699. | |
Xu C Y, Lv Z Q, Shen Y B, Liu D J, Fu Y L, Zhou L, Liu W W, Chen K, Ye H L, Xia X, Xia J J, Wang Y, Ke Y B, Shen J Z. 2020. Metagenomic insights into differences in environmental resistome profiles between integrated and monoculture aquaculture farms in China. Environment International, 144: 106005. | |
Yang B. 2017. Mechanism in grouth and rumen development alteration by early alfalfa supplementation in Hu Lambs.Ph.D thesis. Hangzhou: Zhejiang University. (in Chinese) | |
Yang W, Moore I F, Koteva K P, Bareich D C, Hughes D W, Wright G D.2004. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. Journal of Biological Chemistry, 279 (50): 52346-52352. | |
Yu L, Huang Y M, Zhang Z G, Zhu X C, Li Y T, Li N, Li C B, Xu Z R, Yao X Q, Hu J Y, Wu H, Kuang W M. 2021. Regulation for data acquisition of gut microbiota for Rhinopithecus bieti . DB 53/T1057-2021.(in Chinese) | |
Yu X L. 2020. Study on differences in intestinal microbial community between male and female Yunnan snub‑nosed monkeys (Rhinopithecus bieti) in different seasons. Master thesis. Nanchong: China West Normal University.(in Chinese) | |
Zang K L, Jiang Y, Sun Y, Chen Q L, Zhao L S, Zhao P, Cui W J, Ma X Y, Yan Y L. 2018. Relationship between microecologics and the expression of short chain fatty acids synthesis genes in key bacterial genera in the regulation of intestinal flora structure in populations with constipation and diarrhea. Food Science, 39 (5): 155-165. (in Chinese) | |
Zeng X Q. 2018. Research on glucocorticoid and behavior adaptation strategies of Yunnan snub‑nosed monkey under Human behaviors. Master thesis. Nanchong: China West Normal University. (in Chinese) | |
Zhan J, Wei S. 2015. The distribution and eco-toxicology of tetracycfine in soil and water environment and its degradation: a review. Acta Ecologica Sinica, 35 (9): 2819-2825. (in Chinese) | |
Zhang H, Zhang Q, Song J, Zhang Z, Fang H. 2020. Tracking resistomes, virulence genes, and bacterial pathogens in long‑term manure‑amended greenhouse soils. Journal of Hazardous Materials, 396 (122618): 1-12. | |
Zhang Q, Wu Y, Wang J, Wu G, Long W, Xue Z, Wang L, Zhang X, Pang X, Zhao Y. 2016. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium. Scientific Reports, 6 (27572): 1-11. | |
Zhao H, Sun R, Yu P, Alvarez P J. 2020. High levels of antibiotic resistance genes and opportunistic pathogenic bacteria indicators in urban wild bird feces. Environmental Pollution, 266 (2): 115200. | |
Zhou W R, Wang H N, Zhang A Y, Wu Q, Huang Y, Liu P, Tian L, Yang X, Liu L, Xia Q Q. 2007. Detection of sulfonamides-resistant genes in Salmonella and Escherichia coli isolated from pigs and wild animals. Veterinary Science in China, 37 (4): 287-290. (in Chinese) | |
Zhu D, Chen Q L, Ding J, Wang Y F, Cui H L, Zhu Y G. 2019. Antibiotic resistance genes in the soil ecosystem and planetary health:progress and prospect. Scientia Sinica (Vitae), 49 (12): 1652-1663. (in Chinese) | |
丁俊荣, 张秋香, 刘小鸣, 王刚, 田丰伟, 张灏, 陈卫. 2012. 江苏无锡健康与肠病人群肠道脱硫弧菌数量及肠道菌群多样性. 微生物学报, 8 (52): 1033-1039. | |
于黎, 黄艳梅, 张志刚, 朱勋程, 李依恬, 李宁, 李纯兵, 徐志茹, 姚雪沁, 胡靖扬, 吴宏, 匡卫民. 2021. 滇金丝猴肠道微生物组数据获取技术规程. DB 53/T1057-2021. | |
勾长龙, 王雨琼, 张喜庆, 娄玉杰, 高云航. 2017. 高温堆肥对猪粪中四环素类抗生素及抗性基因的影响. 环境科学学报, 37 (4): 1454-1460. | |
文雯, 徐先林, 欧刚卫. 2013. 多种抗生素抗性基因在儿童肠道菌群的携带状况. 遵义医学院学报, 36 (2): 113-115. | |
田哲, 张昱, 杨敏. 2014. 四环素类药物酶修饰基因-tet (X) 的起源、分布及在环境中的作用. 环境化学, 12: 2027-2037. | |
朱冬, 陈青林, 丁晶, 王一飞, 崔慧灵, 朱永官. 2019. 土壤生态系统中抗生素抗性基因与星球健康: 进展与展望. 中国科学: 生命科学, 49 (12): 1652-1663. | |
李雯雯, 李丽, 吴巩胜, 张宇, 代云川, 周跃 .2016. 评估不同尺度下农牧地对滇金丝猴景观连接度的影响.生态学报, 36 (24): 8136-8144. | |
杨斌. 2017. 早期补饲苜蓿调节幼龄湖羊生长和瘤胃发育的机制研究. 杭州: 浙江大学博士学位论文. | |
呙会会. 2014. 神农架金丝猴源益肠道益生菌的筛选和鉴定. 武汉: 华中农业大学硕士学位论文. | |
余小丽. 2020. 雌雄滇金丝猴不同季节肠道微生物群落结构差异的研究. 南充: 西华师范大学硕士学位论文. | |
罗亚, 唐贇, 张丁, 程鸣, 邹书珍, 张晋东, 康迪. 2020. 不同年龄大熊猫肠道菌群及其酶活特征分析. 畜牧兽医学报, 51 (4): 763-771. | |
周万蓉, 王红宁, 张安云, 吴琦, 黄勇, 柳萍, 田浪, 杨鑫, 刘立, 夏青青. 2007. 猪和野生动物源大肠杆菌及沙门菌中磺胺类药物耐药基因的检测. 中国兽医科学, 37 (4): 287-290. | |
郭松涛. 2004. 秦岭金丝猴 (Rhinopithecus roxellana) 的采食和家域行为的研究. 西安: 西北大学硕士学位论文. | |
郭程, 向左甫, 任保平, 李明. 2011. 滇金丝猴群中全雄单元在移动时的空间结构与功能. 中南林业科技大学学报, 31 (7): 136-139. | |
程鸣. 2021. 滇金丝猴和川金丝猴肠道微生物多样性研究. 南充: 西华师范大学硕士学位论文. | |
曾小琴. 2018. 人为干扰下滇金丝猴 (Rhinopithecus bieti) 皮质醇激素变化与行为适应策略研究. 南充: 西华师范大学硕士学位论文. | |
詹杰, 魏树. 2015. 四环素在土壤和水环境中的分布及其生态毒性与降解. 生态学报, 35 (9): 2819-2825. | |
鲍士旦. 2000. 土壤农化分析. 北京中国农业出版社. | |
蔡凯凯, 黄占旺, 叶德军, 孙长涛. 2011. 益生菌调节肠道菌群及免疫调节作用机理. 中国饲料, 18: 34-37 | |
臧凯丽, 江岩, 孙勇, 陈庆森, 赵林森, 赵培, 崔文静, 马新颖, 闫亚丽. 2018. 微生态制剂调节便秘, 腹泻人群肠道菌群结构与产短链脂肪酸关键菌属的相关性. 食品科学, 39 (5): 155-165. | |
魏辅文. 2016. 我国濒危哺乳动物保护生物学研究进展. 兽类学报, 36 (3): 255-269. |
[1] | 黄小龙, 李海波, 张旭, 程绍传, 晏玉莹, 杨伟, 蒙秉顺, 王丞, 杨杰, 冉景丞. 梵净山同域分布黔金丝猴与藏酋猴的肠道微生物结构差异[J]. 兽类学报, 2024, 44(2): 183-194. |
[2] | 任宝平, 吴瑞东, 黎大勇, Paul A. Garber, 李明. 滇金丝猴夜宿树的选择及夜宿地的利用方式[J]. 兽类学报, 2024, 44(1): 37-49. |
[3] | 斯煌凯, 金祖祥, 张克处, 周飞, 姚永芳, 肖洪涛, 李八斤, 普错汪甲, 徐怀亮. 川西高原地区猕猴栖息地选择的季节差异[J]. 兽类学报, 2023, 43(6): 676-688. |
[4] | 江峰, 宋鹏飞, 张婧捷, 高红梅, 汪海静, 蔡振媛, 刘道鑫, 张同作. 不同养殖场林麝肠道微生物组成和功能的差异[J]. 兽类学报, 2023, 43(2): 129-140. |
[5] | 叶秀林, 郭克疾, 李欣蕊, 吴庆, 张梦斐, 李明, 赵序茅. 气候变化导致青藏高原马鹿种群适应性分布退缩:以类乌齐马鹿国家级自然保护区为例[J]. 兽类学报, 2023, 43(2): 149-156. |
[6] | 郭秋艳, 韦晓, 陆媚静, 范鹏来, 周岐海. 非人灵长类肠道微生物研究进展与展望[J]. 兽类学报, 2023, 43(1): 69-81. |
[7] | 张良志, 唐显江, 任世恩, 赵雅琪, 张堰铭. 室内饲养对高原鼠兔肠道微生物群落构建过程的影响[J]. 兽类学报, 2022, 42(5): 519-530. |
[8] | 钱天陆, 秦淑洁, 吴朝宁, 席唱白, 王结臣. 基于MaxEnt模型的人类干扰对滇金丝猴潜在分布的影响[J]. 兽类学报, 2022, 42(4): 349-361. |
[9] | 陈红, 吉晟男, 张勘, 王大勇, 胡杰, 李艳红. 小相岭山系大中型兽类多样性的红外相机调查[J]. 兽类学报, 2022, 42(4): 461-470. |
[10] | 范超, 张良志, 付海波, 刘传发, 李文靖, 张贺, 唐显江, 程琪, 沈文娟, 张堰铭. 高原鼠兔肠道微生物中丰富及稀有类群的季节性特征[J]. 兽类学报, 2021, 41(6): 617-630. |
[11] | 魏辅文, 黄广平, 樊惠中, 胡义波. 中国濒危兽类保护基因组学和宏基因组学研究进展与展望[J]. 兽类学报, 2021, 41(5): 581-590. |
[12] | 李兴康, 钟旭凯, 韦绍干, 崔亮伟, 范朋飞, 管振华, 马长勇. 群体大小和觅食环境变化对东黑冠长臂猿日移动距离的影响[J]. 兽类学报, 2021, 41(4): 388-397. |
[13] | 李欣蕊, 赵序茅, 李明. 气候变化和人为干扰对中国三种金丝猴地理分布的未来影响[J]. 兽类学报, 2021, 41(3): 310-320. |
[14] | 曾嘉鸣 赵华斌. 蝙蝠抗病毒天然免疫的研究进展[J]. 兽类学报, 2020, 40(6): 560-570. |
[15] | 刘周 周虎 郭瑞 章书声 许丽娟 罗远 徐爱春. 浙江清凉峰国家级自然保护区华南梅花鹿栖息地内人为干扰类型及时空分布格局[J]. 兽类学报, 2020, 40(4): 355-363. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||